Project

General

Profile

Statistics
| Revision:

root / lab4 / .minix-src / include / i386 / pmap.h @ 14

History | View | Annotate | Download (13.8 KB)

1
/*        $NetBSD: pmap.h,v 1.117 2014/04/21 19:12:11 christos Exp $        */
2

    
3
/*
4
 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5
 * All rights reserved.
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions
9
 * are met:
10
 * 1. Redistributions of source code must retain the above copyright
11
 *    notice, this list of conditions and the following disclaimer.
12
 * 2. Redistributions in binary form must reproduce the above copyright
13
 *    notice, this list of conditions and the following disclaimer in the
14
 *    documentation and/or other materials provided with the distribution.
15
 *
16
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 */
27

    
28
/*
29
 * Copyright (c) 2001 Wasabi Systems, Inc.
30
 * All rights reserved.
31
 *
32
 * Written by Frank van der Linden for Wasabi Systems, Inc.
33
 *
34
 * Redistribution and use in source and binary forms, with or without
35
 * modification, are permitted provided that the following conditions
36
 * are met:
37
 * 1. Redistributions of source code must retain the above copyright
38
 *    notice, this list of conditions and the following disclaimer.
39
 * 2. Redistributions in binary form must reproduce the above copyright
40
 *    notice, this list of conditions and the following disclaimer in the
41
 *    documentation and/or other materials provided with the distribution.
42
 * 3. All advertising materials mentioning features or use of this software
43
 *    must display the following acknowledgement:
44
 *      This product includes software developed for the NetBSD Project by
45
 *      Wasabi Systems, Inc.
46
 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
47
 *    or promote products derived from this software without specific prior
48
 *    written permission.
49
 *
50
 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
51
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
54
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60
 * POSSIBILITY OF SUCH DAMAGE.
61
 */
62

    
63
#ifndef        _I386_PMAP_H_
64
#define        _I386_PMAP_H_
65

    
66
#if defined(_KERNEL_OPT)
67
#include "opt_user_ldt.h"
68
#include "opt_xen.h"
69
#endif
70

    
71
#include <sys/atomic.h>
72

    
73
#include <i386/pte.h>
74
#include <machine/segments.h>
75
#if defined(_KERNEL)
76
#include <machine/cpufunc.h>
77
#endif
78

    
79
#include <uvm/uvm_object.h>
80
#ifdef XEN
81
#include <xen/xenfunc.h>
82
#include <xen/xenpmap.h>
83
#endif /* XEN */
84

    
85
/*
86
 * see pte.h for a description of i386 MMU terminology and hardware
87
 * interface.
88
 *
89
 * a pmap describes a processes' 4GB virtual address space.  when PAE
90
 * is not in use, this virtual address space can be broken up into 1024 4MB
91
 * regions which are described by PDEs in the PDP.  the PDEs are defined as
92
 * follows:
93
 *
94
 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
95
 * (the following assumes that KERNBASE is 0xc0000000)
96
 *
97
 * PDE#s        VA range                usage
98
 * 0->766        0x0 -> 0xbfc00000        user address space
99
 * 767                0xbfc00000->                recursive mapping of PDP (used for
100
 *                        0xc0000000        linear mapping of PTPs)
101
 * 768->1023        0xc0000000->                kernel address space (constant
102
 *                        0xffc00000        across all pmap's/processes)
103
 *                        <end>
104
 *
105
 *
106
 * note: a recursive PDP mapping provides a way to map all the PTEs for
107
 * a 4GB address space into a linear chunk of virtual memory.  in other
108
 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
109
 * area.  the PTE for page 1 is the second int.  the very last int in the
110
 * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
111
 * address).
112
 *
113
 * all pmap's PD's must have the same values in slots 768->1023 so that
114
 * the kernel is always mapped in every process.  these values are loaded
115
 * into the PD at pmap creation time.
116
 *
117
 * at any one time only one pmap can be active on a processor.  this is
118
 * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
119
 * will have all its PTEs mapped into memory at the recursive mapping
120
 * point (slot #767 as show above).  when the pmap code wants to find the
121
 * PTE for a virtual address, all it has to do is the following:
122
 *
123
 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
124
 *                = 0xbfc00000 + (VA / 4096) * 4
125
 *
126
 * what happens if the pmap layer is asked to perform an operation
127
 * on a pmap that is not the one which is currently active?  in that
128
 * case we temporarily load this pmap, perform the operation, and mark
129
 * the currently active one as pending lazy reload.
130
 *
131
 * the following figure shows the effects of the recursive PDP mapping:
132
 *
133
 *   PDP (%cr3)
134
 *   +----+
135
 *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
136
 *   |    |
137
 *   |    |
138
 *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
139
 *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
140
 *   |    |
141
 *   +----+
142
 *
143
 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
144
 *
145
 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
146
 * PTP:
147
 *
148
 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
149
 *   +----+
150
 *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
151
 *   |    |
152
 *   |    |
153
 *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
154
 *   | 768| -> maps contents of first kernel PTP
155
 *   |    |
156
 *   |1023|
157
 *   +----+
158
 *
159
 * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
160
 * defined as "PDP_BASE".... within that mapping there are two
161
 * defines:
162
 *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
163
 *      which points back to itself.
164
 *
165
 * - PAE support -
166
 * ---------------
167
 *
168
 * PAE adds another layer of indirection during address translation, breaking
169
 * up the translation process in 3 different levels:
170
 * - L3 page directory, containing 4 * 64-bits addresses (index determined by
171
 * bits [31:30] from the virtual address). This breaks up the address space
172
 * in 4 1GB regions.
173
 * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
174
 * in 512 * 2MB regions.
175
 * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
176
 * the pages is still 4K).
177
 *
178
 * The kernel virtual space is mapped by the last entry in the L3 page,
179
 * the first 3 entries mapping the user VA space.
180
 *
181
 * Because the L3 has only 4 entries of 1GB each, we can't use recursive
182
 * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
183
 * virtual space). There are also restrictions imposed by Xen on the
184
 * last entry of the L3 PD (reference count to this page cannot be
185
 * bigger than 1), which makes it hard to use one L3 page per pmap to
186
 * switch between pmaps using %cr3.
187
 *
188
 * As such, each CPU gets its own L3 page that is always loaded into its %cr3
189
 * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
190
 * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
191
 * pages long (corresponding to the 4 entries of the L3), and the different
192
 * index/slots (like PDP_PDE) are adapted accordingly.
193
 * 
194
 * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
195
 * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
196
 *
197
 * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
198
 * recursively.
199
 *
200
 * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
201
 * count on this page to be exactly one), so we use a shadow PD page for
202
 * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
203
 * contiguous we'll allocate/copy one page per pmap.
204
 */
205

    
206
/*
207
 * Mask to get rid of the sign-extended part of addresses.
208
 */
209
#define VA_SIGN_MASK                0
210
#define VA_SIGN_NEG(va)                ((va) | VA_SIGN_MASK)
211
/*
212
 * XXXfvdl this one's not right.
213
 */
214
#define VA_SIGN_POS(va)                ((va) & ~VA_SIGN_MASK)
215

    
216
/*
217
 * the following defines identify the slots used as described above.
218
 */
219
#ifdef PAE
220
#define L2_SLOT_PTE        (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
221
#define L2_SLOT_KERN        (KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
222
#else /* PAE */
223
#define L2_SLOT_PTE        (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
224
#define L2_SLOT_KERN        (KERNBASE/NBPD_L2)   /* 768: start of kernel space */
225
#endif /* PAE */
226

    
227
#define        L2_SLOT_KERNBASE L2_SLOT_KERN
228

    
229
#define PDIR_SLOT_KERN        L2_SLOT_KERN
230
#define PDIR_SLOT_PTE        L2_SLOT_PTE
231

    
232
/*
233
 * the following defines give the virtual addresses of various MMU
234
 * data structures:
235
 * PTE_BASE: the base VA of the linear PTE mappings
236
 * PDP_BASE: the base VA of the recursive mapping of the PDP
237
 * PDP_PDE: the VA of the PDE that points back to the PDP
238
 */
239

    
240
#define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
241

    
242
#define L1_BASE                PTE_BASE
243

    
244
#define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
245

    
246
#define PDP_PDE                (L2_BASE + PDIR_SLOT_PTE)
247

    
248
#define PDP_BASE        L2_BASE
249

    
250
/* largest value (-1 for APTP space) */
251
#define NKL2_MAX_ENTRIES        (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
252
#define NKL1_MAX_ENTRIES        (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
253

    
254
#define NKL2_KIMG_ENTRIES        0        /* XXX unused */
255

    
256
#define NKL2_START_ENTRIES        0        /* XXX computed on runtime */
257
#define NKL1_START_ENTRIES        0        /* XXX unused */
258

    
259
#ifndef XEN
260
#define NTOPLEVEL_PDES                (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
261
#else        /* !XEN */
262
#ifdef  PAE
263
#define NTOPLEVEL_PDES                1964        /* 1964-2047 reserved by Xen */
264
#else        /* PAE */
265
#define NTOPLEVEL_PDES                1008        /* 1008-1023 reserved by Xen */
266
#endif        /* PAE */
267
#endif  /* !XEN */
268
#define NPDPG                        (PAGE_SIZE / sizeof (pd_entry_t))
269

    
270
#define PTP_MASK_INITIALIZER        { L1_FRAME, L2_FRAME }
271
#define PTP_SHIFT_INITIALIZER        { L1_SHIFT, L2_SHIFT }
272
#define NKPTP_INITIALIZER        { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
273
#define NKPTPMAX_INITIALIZER        { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
274
#define NBPD_INITIALIZER        { NBPD_L1, NBPD_L2 }
275
#define PDES_INITIALIZER        { L2_BASE }
276

    
277
#define PTP_LEVELS        2
278

    
279
/*
280
 * PG_AVAIL usage: we make use of the ignored bits of the PTE
281
 */
282

    
283
#define PG_W                PG_AVAIL1        /* "wired" mapping */
284
#define PG_PVLIST        PG_AVAIL2        /* mapping has entry on pvlist */
285
#define PG_X                PG_AVAIL3        /* executable mapping */
286

    
287
/*
288
 * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
289
 * Used to avoid false sharing of cache lines.
290
 */
291
#ifdef PAE
292
#define NPTECL                4
293
#else
294
#define NPTECL                8
295
#endif
296

    
297
#include <x86/pmap.h>
298

    
299
#ifndef XEN
300
#define pmap_pa2pte(a)                        (a)
301
#define pmap_pte2pa(a)                        ((a) & PG_FRAME)
302
#define pmap_pte_set(p, n)                do { *(p) = (n); } while (0)
303
#define pmap_pte_flush()                /* nothing */
304

    
305
#ifdef PAE
306
#define pmap_pte_cas(p, o, n)                atomic_cas_64((p), (o), (n))
307
#define pmap_pte_testset(p, n)                \
308
    atomic_swap_64((volatile uint64_t *)p, n)
309
#define pmap_pte_setbits(p, b)                \
310
    atomic_or_64((volatile uint64_t *)p, b)
311
#define pmap_pte_clearbits(p, b)        \
312
    atomic_and_64((volatile uint64_t *)p, ~(b))
313
#else /* PAE */
314
#define pmap_pte_cas(p, o, n)                atomic_cas_32((p), (o), (n))
315
#define pmap_pte_testset(p, n)                \
316
    atomic_swap_ulong((volatile unsigned long *)p, n)
317
#define pmap_pte_setbits(p, b)                \
318
    atomic_or_ulong((volatile unsigned long *)p, b)
319
#define pmap_pte_clearbits(p, b)        \
320
    atomic_and_ulong((volatile unsigned long *)p, ~(b))
321
#endif /* PAE */
322

    
323
#else /* XEN */
324
extern kmutex_t pte_lock;
325

    
326
static __inline pt_entry_t
327
pmap_pa2pte(paddr_t pa)
328
{
329
        return (pt_entry_t)xpmap_ptom_masked(pa);
330
}
331

    
332
static __inline paddr_t
333
pmap_pte2pa(pt_entry_t pte)
334
{
335
        return xpmap_mtop_masked(pte & PG_FRAME);
336
}
337
static __inline void
338
pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
339
{
340
        int s = splvm();
341
        xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
342
        splx(s);
343
}
344

    
345
static __inline pt_entry_t
346
pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
347
{
348
        pt_entry_t opte;
349

    
350
        mutex_enter(&pte_lock);
351
        opte = *ptep;
352
        if (opte == o) {
353
                xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
354
                xpq_flush_queue();
355
        }
356
        mutex_exit(&pte_lock);
357
        return opte;
358
}
359

    
360
static __inline pt_entry_t
361
pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
362
{
363
        pt_entry_t opte;
364

    
365
        mutex_enter(&pte_lock);
366
        opte = *pte;
367
        xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
368
            npte);
369
        xpq_flush_queue();
370
        mutex_exit(&pte_lock);
371
        return opte;
372
}
373

    
374
static __inline void
375
pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
376
{
377
        mutex_enter(&pte_lock);
378
        xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
379
        xpq_flush_queue();
380
        mutex_exit(&pte_lock);
381
}
382

    
383
static __inline void
384
pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
385
{        
386
        mutex_enter(&pte_lock);
387
        xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
388
            (*pte) & ~bits);
389
        xpq_flush_queue();
390
        mutex_exit(&pte_lock);
391
}
392

    
393
static __inline void
394
pmap_pte_flush(void)
395
{
396
        int s = splvm();
397
        xpq_flush_queue();
398
        splx(s);
399
}
400

    
401
#endif
402

    
403
struct vm_map;
404
struct trapframe;
405
struct pcb;
406

    
407
int        pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
408
void        pmap_ldt_cleanup(struct lwp *);
409

    
410
#include <x86/pmap_pv.h>
411

    
412
#define        __HAVE_VM_PAGE_MD
413
#define        VM_MDPAGE_INIT(pg) \
414
        memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
415
        PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
416

    
417
struct vm_page_md {
418
        struct pmap_page mp_pp;
419
};
420

    
421
#endif        /* _I386_PMAP_H_ */