root / lab4 / .minix-src / include / i386 / pmap.h @ 14
History | View | Annotate | Download (13.8 KB)
1 | 13 | up20180614 | /* $NetBSD: pmap.h,v 1.117 2014/04/21 19:12:11 christos Exp $ */
|
---|---|---|---|
2 | |||
3 | /*
|
||
4 | * Copyright (c) 1997 Charles D. Cranor and Washington University.
|
||
5 | * All rights reserved.
|
||
6 | *
|
||
7 | * Redistribution and use in source and binary forms, with or without
|
||
8 | * modification, are permitted provided that the following conditions
|
||
9 | * are met:
|
||
10 | * 1. Redistributions of source code must retain the above copyright
|
||
11 | * notice, this list of conditions and the following disclaimer.
|
||
12 | * 2. Redistributions in binary form must reproduce the above copyright
|
||
13 | * notice, this list of conditions and the following disclaimer in the
|
||
14 | * documentation and/or other materials provided with the distribution.
|
||
15 | *
|
||
16 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
17 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
18 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
19 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
21 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
22 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
23 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
25 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
26 | */
|
||
27 | |||
28 | /*
|
||
29 | * Copyright (c) 2001 Wasabi Systems, Inc.
|
||
30 | * All rights reserved.
|
||
31 | *
|
||
32 | * Written by Frank van der Linden for Wasabi Systems, Inc.
|
||
33 | *
|
||
34 | * Redistribution and use in source and binary forms, with or without
|
||
35 | * modification, are permitted provided that the following conditions
|
||
36 | * are met:
|
||
37 | * 1. Redistributions of source code must retain the above copyright
|
||
38 | * notice, this list of conditions and the following disclaimer.
|
||
39 | * 2. Redistributions in binary form must reproduce the above copyright
|
||
40 | * notice, this list of conditions and the following disclaimer in the
|
||
41 | * documentation and/or other materials provided with the distribution.
|
||
42 | * 3. All advertising materials mentioning features or use of this software
|
||
43 | * must display the following acknowledgement:
|
||
44 | * This product includes software developed for the NetBSD Project by
|
||
45 | * Wasabi Systems, Inc.
|
||
46 | * 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
||
47 | * or promote products derived from this software without specific prior
|
||
48 | * written permission.
|
||
49 | *
|
||
50 | * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
||
51 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||
52 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
||
54 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
55 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
56 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
57 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
58 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
59 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
60 | * POSSIBILITY OF SUCH DAMAGE.
|
||
61 | */
|
||
62 | |||
63 | #ifndef _I386_PMAP_H_
|
||
64 | #define _I386_PMAP_H_
|
||
65 | |||
66 | #if defined(_KERNEL_OPT)
|
||
67 | #include "opt_user_ldt.h" |
||
68 | #include "opt_xen.h" |
||
69 | #endif
|
||
70 | |||
71 | #include <sys/atomic.h> |
||
72 | |||
73 | #include <i386/pte.h> |
||
74 | #include <machine/segments.h> |
||
75 | #if defined(_KERNEL)
|
||
76 | #include <machine/cpufunc.h> |
||
77 | #endif
|
||
78 | |||
79 | #include <uvm/uvm_object.h> |
||
80 | #ifdef XEN
|
||
81 | #include <xen/xenfunc.h> |
||
82 | #include <xen/xenpmap.h> |
||
83 | #endif /* XEN */ |
||
84 | |||
85 | /*
|
||
86 | * see pte.h for a description of i386 MMU terminology and hardware
|
||
87 | * interface.
|
||
88 | *
|
||
89 | * a pmap describes a processes' 4GB virtual address space. when PAE
|
||
90 | * is not in use, this virtual address space can be broken up into 1024 4MB
|
||
91 | * regions which are described by PDEs in the PDP. the PDEs are defined as
|
||
92 | * follows:
|
||
93 | *
|
||
94 | * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
|
||
95 | * (the following assumes that KERNBASE is 0xc0000000)
|
||
96 | *
|
||
97 | * PDE#s VA range usage
|
||
98 | * 0->766 0x0 -> 0xbfc00000 user address space
|
||
99 | * 767 0xbfc00000-> recursive mapping of PDP (used for
|
||
100 | * 0xc0000000 linear mapping of PTPs)
|
||
101 | * 768->1023 0xc0000000-> kernel address space (constant
|
||
102 | * 0xffc00000 across all pmap's/processes)
|
||
103 | * <end>
|
||
104 | *
|
||
105 | *
|
||
106 | * note: a recursive PDP mapping provides a way to map all the PTEs for
|
||
107 | * a 4GB address space into a linear chunk of virtual memory. in other
|
||
108 | * words, the PTE for page 0 is the first int mapped into the 4MB recursive
|
||
109 | * area. the PTE for page 1 is the second int. the very last int in the
|
||
110 | * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
|
||
111 | * address).
|
||
112 | *
|
||
113 | * all pmap's PD's must have the same values in slots 768->1023 so that
|
||
114 | * the kernel is always mapped in every process. these values are loaded
|
||
115 | * into the PD at pmap creation time.
|
||
116 | *
|
||
117 | * at any one time only one pmap can be active on a processor. this is
|
||
118 | * the pmap whose PDP is pointed to by processor register %cr3. this pmap
|
||
119 | * will have all its PTEs mapped into memory at the recursive mapping
|
||
120 | * point (slot #767 as show above). when the pmap code wants to find the
|
||
121 | * PTE for a virtual address, all it has to do is the following:
|
||
122 | *
|
||
123 | * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
|
||
124 | * = 0xbfc00000 + (VA / 4096) * 4
|
||
125 | *
|
||
126 | * what happens if the pmap layer is asked to perform an operation
|
||
127 | * on a pmap that is not the one which is currently active? in that
|
||
128 | * case we temporarily load this pmap, perform the operation, and mark
|
||
129 | * the currently active one as pending lazy reload.
|
||
130 | *
|
||
131 | * the following figure shows the effects of the recursive PDP mapping:
|
||
132 | *
|
||
133 | * PDP (%cr3)
|
||
134 | * +----+
|
||
135 | * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
|
||
136 | * | |
|
||
137 | * | |
|
||
138 | * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
|
||
139 | * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
|
||
140 | * | |
|
||
141 | * +----+
|
||
142 | *
|
||
143 | * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
|
||
144 | *
|
||
145 | * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
|
||
146 | * PTP:
|
||
147 | *
|
||
148 | * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
|
||
149 | * +----+
|
||
150 | * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
|
||
151 | * | |
|
||
152 | * | |
|
||
153 | * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
|
||
154 | * | 768| -> maps contents of first kernel PTP
|
||
155 | * | |
|
||
156 | * |1023|
|
||
157 | * +----+
|
||
158 | *
|
||
159 | * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
|
||
160 | * defined as "PDP_BASE".... within that mapping there are two
|
||
161 | * defines:
|
||
162 | * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
|
||
163 | * which points back to itself.
|
||
164 | *
|
||
165 | * - PAE support -
|
||
166 | * ---------------
|
||
167 | *
|
||
168 | * PAE adds another layer of indirection during address translation, breaking
|
||
169 | * up the translation process in 3 different levels:
|
||
170 | * - L3 page directory, containing 4 * 64-bits addresses (index determined by
|
||
171 | * bits [31:30] from the virtual address). This breaks up the address space
|
||
172 | * in 4 1GB regions.
|
||
173 | * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
|
||
174 | * in 512 * 2MB regions.
|
||
175 | * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
|
||
176 | * the pages is still 4K).
|
||
177 | *
|
||
178 | * The kernel virtual space is mapped by the last entry in the L3 page,
|
||
179 | * the first 3 entries mapping the user VA space.
|
||
180 | *
|
||
181 | * Because the L3 has only 4 entries of 1GB each, we can't use recursive
|
||
182 | * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
|
||
183 | * virtual space). There are also restrictions imposed by Xen on the
|
||
184 | * last entry of the L3 PD (reference count to this page cannot be
|
||
185 | * bigger than 1), which makes it hard to use one L3 page per pmap to
|
||
186 | * switch between pmaps using %cr3.
|
||
187 | *
|
||
188 | * As such, each CPU gets its own L3 page that is always loaded into its %cr3
|
||
189 | * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
|
||
190 | * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
|
||
191 | * pages long (corresponding to the 4 entries of the L3), and the different
|
||
192 | * index/slots (like PDP_PDE) are adapted accordingly.
|
||
193 | *
|
||
194 | * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
|
||
195 | * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
|
||
196 | *
|
||
197 | * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
|
||
198 | * recursively.
|
||
199 | *
|
||
200 | * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
|
||
201 | * count on this page to be exactly one), so we use a shadow PD page for
|
||
202 | * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
|
||
203 | * contiguous we'll allocate/copy one page per pmap.
|
||
204 | */
|
||
205 | |||
206 | /*
|
||
207 | * Mask to get rid of the sign-extended part of addresses.
|
||
208 | */
|
||
209 | #define VA_SIGN_MASK 0 |
||
210 | #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
|
||
211 | /*
|
||
212 | * XXXfvdl this one's not right.
|
||
213 | */
|
||
214 | #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
|
||
215 | |||
216 | /*
|
||
217 | * the following defines identify the slots used as described above.
|
||
218 | */
|
||
219 | #ifdef PAE
|
||
220 | #define L2_SLOT_PTE (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */ |
||
221 | #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 1536: start of kernel space */ |
||
222 | #else /* PAE */ |
||
223 | #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */ |
||
224 | #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */ |
||
225 | #endif /* PAE */ |
||
226 | |||
227 | #define L2_SLOT_KERNBASE L2_SLOT_KERN
|
||
228 | |||
229 | #define PDIR_SLOT_KERN L2_SLOT_KERN
|
||
230 | #define PDIR_SLOT_PTE L2_SLOT_PTE
|
||
231 | |||
232 | /*
|
||
233 | * the following defines give the virtual addresses of various MMU
|
||
234 | * data structures:
|
||
235 | * PTE_BASE: the base VA of the linear PTE mappings
|
||
236 | * PDP_BASE: the base VA of the recursive mapping of the PDP
|
||
237 | * PDP_PDE: the VA of the PDE that points back to the PDP
|
||
238 | */
|
||
239 | |||
240 | #define PTE_BASE ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
|
||
241 | |||
242 | #define L1_BASE PTE_BASE
|
||
243 | |||
244 | #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1)) |
||
245 | |||
246 | #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
|
||
247 | |||
248 | #define PDP_BASE L2_BASE
|
||
249 | |||
250 | /* largest value (-1 for APTP space) */
|
||
251 | #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1) |
||
252 | #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG) |
||
253 | |||
254 | #define NKL2_KIMG_ENTRIES 0 /* XXX unused */ |
||
255 | |||
256 | #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */ |
||
257 | #define NKL1_START_ENTRIES 0 /* XXX unused */ |
||
258 | |||
259 | #ifndef XEN
|
||
260 | #define NTOPLEVEL_PDES (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t))) |
||
261 | #else /* !XEN */ |
||
262 | #ifdef PAE
|
||
263 | #define NTOPLEVEL_PDES 1964 /* 1964-2047 reserved by Xen */ |
||
264 | #else /* PAE */ |
||
265 | #define NTOPLEVEL_PDES 1008 /* 1008-1023 reserved by Xen */ |
||
266 | #endif /* PAE */ |
||
267 | #endif /* !XEN */ |
||
268 | #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t)) |
||
269 | |||
270 | #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
|
||
271 | #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
|
||
272 | #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
|
||
273 | #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
|
||
274 | #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
|
||
275 | #define PDES_INITIALIZER { L2_BASE }
|
||
276 | |||
277 | #define PTP_LEVELS 2 |
||
278 | |||
279 | /*
|
||
280 | * PG_AVAIL usage: we make use of the ignored bits of the PTE
|
||
281 | */
|
||
282 | |||
283 | #define PG_W PG_AVAIL1 /* "wired" mapping */ |
||
284 | #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */ |
||
285 | #define PG_X PG_AVAIL3 /* executable mapping */ |
||
286 | |||
287 | /*
|
||
288 | * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
|
||
289 | * Used to avoid false sharing of cache lines.
|
||
290 | */
|
||
291 | #ifdef PAE
|
||
292 | #define NPTECL 4 |
||
293 | #else
|
||
294 | #define NPTECL 8 |
||
295 | #endif
|
||
296 | |||
297 | #include <x86/pmap.h> |
||
298 | |||
299 | #ifndef XEN
|
||
300 | #define pmap_pa2pte(a) (a)
|
||
301 | #define pmap_pte2pa(a) ((a) & PG_FRAME)
|
||
302 | #define pmap_pte_set(p, n) do { *(p) = (n); } while (0) |
||
303 | #define pmap_pte_flush() /* nothing */ |
||
304 | |||
305 | #ifdef PAE
|
||
306 | #define pmap_pte_cas(p, o, n) atomic_cas_64((p), (o), (n))
|
||
307 | #define pmap_pte_testset(p, n) \
|
||
308 | atomic_swap_64((volatile uint64_t *)p, n)
|
||
309 | #define pmap_pte_setbits(p, b) \
|
||
310 | atomic_or_64((volatile uint64_t *)p, b)
|
||
311 | #define pmap_pte_clearbits(p, b) \
|
||
312 | atomic_and_64((volatile uint64_t *)p, ~(b))
|
||
313 | #else /* PAE */ |
||
314 | #define pmap_pte_cas(p, o, n) atomic_cas_32((p), (o), (n))
|
||
315 | #define pmap_pte_testset(p, n) \
|
||
316 | atomic_swap_ulong((volatile unsigned long *)p, n) |
||
317 | #define pmap_pte_setbits(p, b) \
|
||
318 | atomic_or_ulong((volatile unsigned long *)p, b) |
||
319 | #define pmap_pte_clearbits(p, b) \
|
||
320 | atomic_and_ulong((volatile unsigned long *)p, ~(b)) |
||
321 | #endif /* PAE */ |
||
322 | |||
323 | #else /* XEN */ |
||
324 | extern kmutex_t pte_lock;
|
||
325 | |||
326 | static __inline pt_entry_t
|
||
327 | pmap_pa2pte(paddr_t pa) |
||
328 | { |
||
329 | return (pt_entry_t)xpmap_ptom_masked(pa);
|
||
330 | } |
||
331 | |||
332 | static __inline paddr_t
|
||
333 | pmap_pte2pa(pt_entry_t pte) |
||
334 | { |
||
335 | return xpmap_mtop_masked(pte & PG_FRAME);
|
||
336 | } |
||
337 | static __inline void |
||
338 | pmap_pte_set(pt_entry_t *pte, pt_entry_t npte) |
||
339 | { |
||
340 | int s = splvm();
|
||
341 | xpq_queue_pte_update(xpmap_ptetomach(pte), npte); |
||
342 | splx(s); |
||
343 | } |
||
344 | |||
345 | static __inline pt_entry_t
|
||
346 | pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
|
||
347 | { |
||
348 | pt_entry_t opte; |
||
349 | |||
350 | mutex_enter(&pte_lock); |
||
351 | opte = *ptep; |
||
352 | if (opte == o) {
|
||
353 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n); |
||
354 | xpq_flush_queue(); |
||
355 | } |
||
356 | mutex_exit(&pte_lock); |
||
357 | return opte;
|
||
358 | } |
||
359 | |||
360 | static __inline pt_entry_t
|
||
361 | pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
|
||
362 | { |
||
363 | pt_entry_t opte; |
||
364 | |||
365 | mutex_enter(&pte_lock); |
||
366 | opte = *pte; |
||
367 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), |
||
368 | npte); |
||
369 | xpq_flush_queue(); |
||
370 | mutex_exit(&pte_lock); |
||
371 | return opte;
|
||
372 | } |
||
373 | |||
374 | static __inline void |
||
375 | pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
|
||
376 | { |
||
377 | mutex_enter(&pte_lock); |
||
378 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits); |
||
379 | xpq_flush_queue(); |
||
380 | mutex_exit(&pte_lock); |
||
381 | } |
||
382 | |||
383 | static __inline void |
||
384 | pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
|
||
385 | { |
||
386 | mutex_enter(&pte_lock); |
||
387 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), |
||
388 | (*pte) & ~bits); |
||
389 | xpq_flush_queue(); |
||
390 | mutex_exit(&pte_lock); |
||
391 | } |
||
392 | |||
393 | static __inline void |
||
394 | pmap_pte_flush(void)
|
||
395 | { |
||
396 | int s = splvm();
|
||
397 | xpq_flush_queue(); |
||
398 | splx(s); |
||
399 | } |
||
400 | |||
401 | #endif
|
||
402 | |||
403 | struct vm_map;
|
||
404 | struct trapframe;
|
||
405 | struct pcb;
|
||
406 | |||
407 | int pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *); |
||
408 | void pmap_ldt_cleanup(struct lwp *); |
||
409 | |||
410 | #include <x86/pmap_pv.h> |
||
411 | |||
412 | #define __HAVE_VM_PAGE_MD
|
||
413 | #define VM_MDPAGE_INIT(pg) \
|
||
414 | memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \ |
||
415 | PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp) |
||
416 | |||
417 | struct vm_page_md {
|
||
418 | struct pmap_page mp_pp;
|
||
419 | }; |
||
420 | |||
421 | #endif /* _I386_PMAP_H_ */ |