Wiki » History » Version 7
Petri Partanen, 19/05/2020 17:32
1 | 1 | Petri Partanen | h1. Wiki |
---|---|---|---|
2 | 1 | Petri Partanen | |
3 | 4 | Petri Partanen | h2. Promising |
4 | 4 | Petri Partanen | https://github.com/marian-margeta/gait-recognition |
5 | 5 | Petri Partanen | |
6 | 4 | Petri Partanen | ``` |
7 | 4 | Petri Partanen | $ python dummy_pose_estimation.py |
8 | 4 | Petri Partanen | Traceback (most recent call last): |
9 | 4 | Petri Partanen | File "dummy_pose_estimation.py", line 5, in <module> |
10 | 4 | Petri Partanen | from scipy.misc import imresize, imread |
11 | 4 | Petri Partanen | ImportError: cannot import name 'imresize' |
12 | 4 | Petri Partanen | ``` |
13 | 4 | Petri Partanen | |
14 | 4 | Petri Partanen | Solved by using ImageIO: |
15 | 4 | Petri Partanen | ``` |
16 | 4 | Petri Partanen | import imageio |
17 | 4 | Petri Partanen | from PIL import Image |
18 | 4 | Petri Partanen | |
19 | 4 | Petri Partanen | from human_pose_nn import HumanPoseIRNetwork |
20 | 4 | Petri Partanen | |
21 | 4 | Petri Partanen | net_pose = HumanPoseIRNetwork() |
22 | 4 | Petri Partanen | net_pose.restore('models/MPII+LSP.ckpt') |
23 | 4 | Petri Partanen | |
24 | 4 | Petri Partanen | img = imageio.imread('images/patient.png') |
25 | 4 | Petri Partanen | img = Image.fromarray(img).resize((299, 299)) |
26 | 4 | Petri Partanen | ``` |
27 | 4 | Petri Partanen | |
28 | 4 | Petri Partanen | |
29 | 6 | Petri Partanen | h2. Meeting notes |
30 | 7 | Petri Partanen | |
31 | 6 | Petri Partanen | h3. 19.5.2020 |
32 | 7 | Petri Partanen | |
33 | 6 | Petri Partanen | Important: |
34 | 6 | Petri Partanen | Look into optical flows! There's speed patterns which cluster and thus can be used to classify gait. |
35 | 6 | Petri Partanen | |
36 | 6 | Petri Partanen | |
37 | 6 | Petri Partanen | Discussion: |
38 | 6 | Petri Partanen | In the project report we have to be able to answer the following questions: |
39 | 6 | Petri Partanen | * state why the particular method was selected |
40 | 6 | Petri Partanen | * what we compared to |
41 | 6 | Petri Partanen | * perfomance in the literature |
42 | 6 | Petri Partanen | * we have to know what we are talking about. for example, in case of neural network cnn and the whole architecture |
43 | 6 | Petri Partanen | |
44 | 6 | Petri Partanen | |
45 | 6 | Petri Partanen | If using machine learning: |
46 | 6 | Petri Partanen | * consider different metrics/parameters to perform the abnormal and normal gait classification |
47 | 6 | Petri Partanen | * study which parameters yield the best classification results |
48 | 6 | Petri Partanen | |
49 | 6 | Petri Partanen | If using the neural network to build the skeleton: |
50 | 6 | Petri Partanen | * from skeleton, extract features, then use classical machine learning (knn, svm, etc) to perform the classification. |
51 | 6 | Petri Partanen | |
52 | 6 | Petri Partanen | |
53 | 6 | Petri Partanen | Questions: |
54 | 6 | Petri Partanen | * Is there a specific programming language that perform better in this domain? No, we can choose any programming language. Matlab and Python might be the most commonly used. |
55 | 6 | Petri Partanen | |
56 | 6 | Petri Partanen | * If we were to choose the neural network to skeleton approach, how could we extract gait parameters and features from the skeelton? The shared research paper provides inspiration how to extract typical bioimechanical gait features. |
57 | 6 | Petri Partanen | |
58 | 6 | Petri Partanen | |
59 | 2 | Petri Partanen | h2. Evaluated software |
60 | 2 | Petri Partanen | |
61 | 2 | Petri Partanen | h3. DLTdv8 |
62 | 2 | Petri Partanen | MATLAB program to perform motion analysis. Promising but automatic point tracking didn't work. Neural network point tracker feature of the software was not evaluated. |
63 | 2 | Petri Partanen | https://bitbucket.org/thedrick/dltdv/src/default/ |
64 | 2 | Petri Partanen | |
65 | 2 | Petri Partanen | h3. Mokka - Motion kinematic & kinetic analyzer |
66 | 2 | Petri Partanen | Professional software for motion analysis. Requires C3D files, thus not applicable to our project. |
67 | 2 | Petri Partanen | |
68 | 2 | Petri Partanen | h3. MOtoNMS |
69 | 2 | Petri Partanen | https://github.com/RehabEngGroup/MOtoNMS |
70 | 2 | Petri Partanen | |
71 | 3 | Petri Partanen | h2. To be evaluated: |
72 | 2 | Petri Partanen | https://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/ |
73 | 2 | Petri Partanen | https://github.com/gsimchoni/mocap |
74 | 2 | Petri Partanen | https://github.com/gsimchoni/mocap/blob/master/R/readAMC.R |
75 | 2 | Petri Partanen | https://github.com/browarsoftware/RMoCap |