Project

General

Profile

Wiki » History » Version 6

Petri Partanen, 19/05/2020 17:31

1 1 Petri Partanen
h1. Wiki
2 1 Petri Partanen
3 4 Petri Partanen
h2. Promising
4 4 Petri Partanen
https://github.com/marian-margeta/gait-recognition
5 5 Petri Partanen
6 4 Petri Partanen
```
7 4 Petri Partanen
$ python dummy_pose_estimation.py 
8 4 Petri Partanen
Traceback (most recent call last):
9 4 Petri Partanen
  File "dummy_pose_estimation.py", line 5, in <module>
10 4 Petri Partanen
    from scipy.misc import imresize, imread
11 4 Petri Partanen
ImportError: cannot import name 'imresize'
12 4 Petri Partanen
```
13 4 Petri Partanen
14 4 Petri Partanen
Solved by using ImageIO:
15 4 Petri Partanen
```
16 4 Petri Partanen
import imageio
17 4 Petri Partanen
from PIL import Image
18 4 Petri Partanen
19 4 Petri Partanen
from human_pose_nn import HumanPoseIRNetwork
20 4 Petri Partanen
21 4 Petri Partanen
net_pose = HumanPoseIRNetwork()
22 4 Petri Partanen
net_pose.restore('models/MPII+LSP.ckpt')
23 4 Petri Partanen
24 4 Petri Partanen
img = imageio.imread('images/patient.png')
25 4 Petri Partanen
img = Image.fromarray(img).resize((299, 299))
26 4 Petri Partanen
```
27 4 Petri Partanen
28 4 Petri Partanen
29 6 Petri Partanen
h2. Meeting notes
30 6 Petri Partanen
h3. 19.5.2020
31 6 Petri Partanen
Important:
32 6 Petri Partanen
Look into optical flows! There's speed patterns which cluster and thus can be used to classify gait.
33 6 Petri Partanen
34 6 Petri Partanen
35 6 Petri Partanen
Discussion:
36 6 Petri Partanen
In the project report we have to be able to answer the following questions:
37 6 Petri Partanen
* state why the particular method was selected
38 6 Petri Partanen
* what we compared to
39 6 Petri Partanen
* perfomance in the literature
40 6 Petri Partanen
* we have to know what we are talking about. for example, in case of neural network cnn and the whole architecture
41 6 Petri Partanen
42 6 Petri Partanen
43 6 Petri Partanen
If using machine learning:
44 6 Petri Partanen
* consider different metrics/parameters to perform the abnormal and normal gait classification
45 6 Petri Partanen
* study which parameters yield the best classification results
46 6 Petri Partanen
47 6 Petri Partanen
If using the neural network to build the skeleton:
48 6 Petri Partanen
* from skeleton, extract features, then use classical machine learning (knn, svm, etc) to perform the classification. 
49 6 Petri Partanen
50 6 Petri Partanen
51 6 Petri Partanen
Questions:
52 6 Petri Partanen
* Is there a specific programming language that perform better in this domain? No, we can choose any programming language. Matlab and Python might be the most commonly used.
53 6 Petri Partanen
54 6 Petri Partanen
* If we were to choose the neural network to skeleton approach, how could we extract gait parameters and features from the skeelton? The shared research paper provides inspiration how to extract typical bioimechanical gait features.
55 6 Petri Partanen
56 6 Petri Partanen
57 2 Petri Partanen
h2. Evaluated software
58 2 Petri Partanen
59 2 Petri Partanen
h3. DLTdv8
60 2 Petri Partanen
MATLAB program to perform motion analysis. Promising but automatic point tracking didn't work. Neural network point tracker feature of the software was not evaluated.
61 2 Petri Partanen
https://bitbucket.org/thedrick/dltdv/src/default/
62 2 Petri Partanen
63 2 Petri Partanen
h3. Mokka - Motion kinematic & kinetic analyzer
64 2 Petri Partanen
Professional software for motion analysis. Requires C3D files, thus not applicable to our project.
65 2 Petri Partanen
66 2 Petri Partanen
h3. MOtoNMS
67 2 Petri Partanen
https://github.com/RehabEngGroup/MOtoNMS
68 2 Petri Partanen
69 3 Petri Partanen
h2. To be evaluated:
70 2 Petri Partanen
https://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/
71 2 Petri Partanen
https://github.com/gsimchoni/mocap
72 2 Petri Partanen
https://github.com/gsimchoni/mocap/blob/master/R/readAMC.R
73 2 Petri Partanen
https://github.com/browarsoftware/RMoCap