
LabWars
Final report
LCOM 2019/20

T5G03
up201806429@fe.up.pt Diogo Miguel Ferreira Rodrigues
up201806554@fe.up.pt Telmo Alexandre Espirito Santo Baptista

06/01/2020

mailto:up201806429@fe.up.pt
mailto:up201806554@fe.up.pt

LabWars - Final report (LCOM 2019/20)

Table of contents

1 User instructions 3
1.1 How to play . 3
1.2 Main menu . 3
1.3 Single player . 4

1.3.1 Campaign . 5
1.3.2 Zombies . 6

1.4 Multiplayer . 7
1.5 Chat . 8

2 Project status 10
2.1 Timer . 10
2.2 Keyboard . 10
2.3 Mouse . 10
2.4 Video card . 11
2.5 Real-Time Clock (RTC) . 11
2.6 Serial port . 11

3 Code organization/structure 12
3.1 libs . 12

3.1.1 classes . 12
3.1.2 graph . 12
3.1.3 uart . 12
3.1.4 utils . 12
3.1.5 others . 12

3.2 proj . 12
3.2.1 campaign . 12
3.2.2 chat . 12
3.2.3 ent . 12
3.2.4 hltp . 12
3.2.5 proj func . 13
3.2.6 others . 13

4 Implementation details 14
4.1 Object-oriented programming . 14
4.2 XPM and XPM2 . 14
4.3 Communication protocols . 14

4.3.1 Non-Critical Transmission Protocol . 14
4.3.2 High-Level Transmission Protocol . 14

4.4 Path-finding . 15

T5G03 2

LabWars - Final report (LCOM 2019/20)

1 User instructions

1.1 How to play

In all game modes, the controls are the same:

• WASD to move North, East, South and West respectively.

• Mouse left-click to fire a bullet.

• Ctrl+’+’ and Ctrl+’-’ to zoom in and out.

• ESC to escape game mode (go back).

1.2 Main menu

On startup, users are greeted by a Loading... message, briefly followed by the main screen.

Figure 1: Main menu

Using the mouse movement and clicks, the user can select one of the avaliable options:

• Single player: Go to single player selection menu, to select one of the single player game modes.

• Multiplayer: Go to multiplayer mode, allowing to select more options.

• Chat: Exchange text messages with another connected computer.

• Exit: Exit the game

The user can also exit the game by presing ESC.

T5G03 3

LabWars - Final report (LCOM 2019/20)

1.3 Single player

Upon entering into single player mode, the user is presented with a menu from which he can choose one of
the options.

Figure 2: Single player menu

• Campaign: campaign mode; kill all autonomous opponents.

• Zombies: zombies mode; kill as many zombies and survive as much time as possible.

• Zombies Ranking: Scoreboard with the highest scores obtained on zombies mode.

• Back: go back to main menu.

The user can also go back to main menu by pressing ESC.

T5G03 4

LabWars - Final report (LCOM 2019/20)

1.3.1 Campaign

In campaign mode the goal is to kill all the opponents in the map as fast as possible, while sustaining as
little damage as possible.

Figure 3: Campaign mode

T5G03 5

LabWars - Final report (LCOM 2019/20)

1.3.2 Zombies

In zombie mode the goal is to kill as many zombies and survive as much time as possible. Zombies slowly
follow the player and attack the player when in short range. Once the player kills a zombie, a new zombie
spawns in a random part of the map, with more life than all previous zombies.

Figure 4: Zombies mode

After exiting zombie mode, the player can check the scoreboard by selecting Zombies Ranking.

Figure 5: Zombies mode scoreboard

T5G03 6

LabWars - Final report (LCOM 2019/20)

1.4 Multiplayer

In multiplayer mode, INCOMPLETE.

T5G03 7

LabWars - Final report (LCOM 2019/20)

1.5 Chat

This chat tool was initially designed as a simple, text mode, test communication between different machines.
We have however decided to include it as a functionality in the project for a number of reasons:

1. It was easy to develop the graphical part and integrate in the project.

2. Having a friendly functionality that uses the communication modules allows for faster debugging; in
case the computers are not properly connected, or if during development something stops working we
can immediately check if the communication modules also stopped working.

3. It served as a minimal insurance that our project would integrate the communication modules, in case
we could not implement multiplayer mode.

4. It is a useful feature.

Figure 6: Chat environment

The chat can be used for exchanging messages of up to 75 characters directly writable with the keyboard.
The character limit was imposed to prevent strings from rendering as wider than the input box, and the fact
they should be directly writable with the keyboard simplifies the process of capturing scancodes, having as
downside not allowing to write characters that require more than one key press (like exclamation or question
marks in a Portuguese keyboard).

T5G03 8

LabWars - Final report (LCOM 2019/20)

(a) Computer 1 chat (b) Computer 2 chat

Figure 7: Two users interacting via chat

The user can exit the chat mode by pressing ESC.

T5G03 9

LabWars - Final report (LCOM 2019/20)

2 Project status

All functionalities previously presented were fully implemented, with the exception of:

• Campaign: autonomous opponents were supposed to follow a pre-programmed path and shoot on
sight at the player. Currently, they don’t do either of those.

• Multiplayer: still working on it.

The I/O devices used in the project are presented in the following table.

Device What for Method
Timer Frame rate, time since beginning of game Interrupts

Keyboard Player movement, writing chat messages Interrupts
Mouse Player orientation, shooting, selecting options in menus Interrupts

Video card In-game drawing, menus None
RTC Scoreboards Interrupts

Serial port Chat communication, multiplayer modes Interrupts

To manage all interrupt subscriptions, the general function unsubscribe interrupt was implemented and
used.

2.1 Timer

Timer 0 is used to generate periodic interrupts at a rate of 60Hz, essentially controlling a large part of what
the program does.

Timer interrupts regulate screen refreshing, which happens at a rate of 60Hz. In all game modes, timer
interrupts serve not only the purpose of refreshing the screen, but also to process all the game data: collisions,
movement, path-finding algorithms, etc.

To manage timer interrupt subscriptions, functions subscribe timer interrupt, timer int handler

and timer get no interrupts were implemented and used.

2.2 Keyboard

The keyboard was configured to issue interrupts on key presses and releases.
The keyboard is used to control some menus (namely using ESC), to input text in the chat, and to

control player movement in the game and zoom in/out options.
To manage keyboard interrupt subscription, function subscribe kbc interrupt was implemented. To

manage keyboard interrupts, functions kbc ih, keyboard get done, keyboard get scancode and update key presses

were implemented and used.

2.3 Mouse

The mouse was configured to issue interrupts on movement and button presses.
The mouse is used to control all menus (position and buttons), as well as allowing the player to aim at

the opponents (position) and shoot bullets (buttons).
To manage mouse interrupt subscription, function subscribe mouse interrupt was implemented. To

manage mouse interrupts, functions mouse ih, mouse parse packet and update mouse, among others, were
implemented.

T5G03 10

LabWars - Final report (LCOM 2019/20)

2.4 Video card

The video card was configured to work in graphic mode with direct color encoding, with resolution 1024x768
pixels and 8 bits for each color component Red, Green and Blue, yielding a total of approximately 16.8 million
colors.

Simple buffering was used to eliminate flickering. All graphics are first drawn to the scree buffer, and
only after all graphical operations (that is, at the end of the processing of the timer interrupt) is the buffer
information copied to the VRAM.

The modules rectangle t and menu t were developed for displaying simple shapes and menus. The
modules basic sprite t and sprite t were developed for displaying moving sprites, allowing for rotation
around the ”center” of the image, as well as scaling and movement.

The modules font t and text t were developed to allow for dynamic rendering of text, using as default
(and, for now, sole) font Consolas. The only type of supported fonts are bitmap fonts.

Configuration of the UART was made using the functions graph init and graph cleanup developed dur-
ing the project. Drawing to the buffer is made primarily through the functions graph get XRes,
graph get YRes, graph set pixel, graph clear screen and graph draw.

Basic sprites are constructed from small XPM files, or loaded at runtime from XPM2 files. A XPM2 file
is a XPM file stripped from all the C syntax, leaving only the strings. This format is easier to load at runtime
than XPM. A XPM file can be easily converted to a XPM2 file using the function xpm save as xpm2. All
XPM arrays of strings are loaded to bitmaps using the function xpm load provided by the LCF.

2.5 Real-Time Clock (RTC)

The RTC was configured to issue interrupts and if the interrupt source is an Update Event, in which the bit
4 of Register C will be set, then the values of time will be updated by reading their registers.

The date isn’t updated unless asked, this is, on the interrupt notification the date isn’t updated, and the
reading process is different from the time. If it’s asked to read the date then the date registers will be read
two consecutive times, and will repeat the process if the date values of consecutive readings isn’t equal, this
ensures the values read are correct in case any update occurs. These updates aren’t as frequent as the time
values so there’s no need to update it every second.

To manage RTC interrupt subscription, function subscribe rtc interrupt was implemented. In order
to enable the Update Event Interrupts, the function rtc set updates int that enables or disables the
Update Events interrupts by writing to bit 4 of register B. To manage mouse interrupts, function rtc ih was
implemented, that verifies if the source if from an Update Event by reading register C and verifying bit 4 and
if so updates the time values (seconds, minutes and hours). To ease the process of reading and writing values
to the RTC, functions rtc read register and rtc write register were implemented as general functions,
while having specific functions for reading the date and time values, such as rtc read min among others,
that use the general functions cited above.

The RTC is used to obtain date and time for the scoreboards on the game-modes.

2.6 Serial port

The UART was configured to issue interrupts for Receiver Ready and Transmitter Empty. Communication
is processed with the same parameters at both ends, at a bit-rate of 9600bps, 8 bits per char, 2 stop bits.
UART FIFOs are used, with trigger level of 4 bytes per interrupt. The protocols that were developed will be
discussed in section 4.

In multiplayer mode, data is transferred from host to remote at a frequency of 60Hz, with each message
having at least 24 bytes. Data transference from remote to host is made whenever needed, with each message
having on average 9 bytes.

T5G03 11

LabWars - Final report (LCOM 2019/20)

3 Code organization/structure

3.1 libs

Collection of useful classes and functions. This module was developed with the goal of being as general and
independent from proj as possible, although there are rare occasions where sub-modules of libs include
sub-modules of proj.

3.1.1 classes

Provides classes list t and queue t. These classes achieve generality by storing pointers to void, which
have as major disadvantage requiring the use of free.

3.1.2 graph

Provides basic elements for screen drawing, like drawing pixels, rectangles, text. Manages screen buffering
and VRAM.

3.1.3 uart

Provides basic functions and the NCTP protocol for communication between computers.

3.1.4 utils

Common functions, as well as functions for handling XPMs and XPM2 file format.

3.1.5 others

• kbc: Manage mouse and keyboard

• rtc: Manage RTC, get current time

• timer: Manage timer 0 interrupts and subscriptions

3.2 proj

3.2.1 campaign

Campaign mode module.

3.2.2 chat

Exchange messages with connected computer.

3.2.3 ent

One of the most important modules. Implements the most important entities, and controls their interactions.

3.2.4 hltp

Provides function to interpret and send information for the serial port.

T5G03 12

LabWars - Final report (LCOM 2019/20)

3.2.5 proj func

Functions related to the game dynamics, such as updating the game state, updating movement, keys presses,
game timer and building the information for serial port.

3.2.6 others

• interrupts func: group some interrupt handling functions together

• makecode map: map makecodes to chars

• proj macros: macros used throughout the project

• proj structures: mostly structures for transmission via HLTP

• singplayer: simple menu

Weight Resp. Contribution DR Contribution TB

libs

classes 13% DR Everything -
graph 10% DR Most part Some contributions
kbc 2% TB In labs In labs, adapted to project
rtc 4% TB - Everything

timer 2% TB In labs In labs, adapted to project
uart 16% DR Everything -
utils 3% DR In labs, most part In labs, some contributions

proj

campaign 3% DR Most part Some contributions
chat 7% DR Everything -
ent 10% DR Everything except TB bullet t

hltp 4% DR Most part Some contributions
interrupts func 3% TB Small contribution Most part
makecode map 1% TB - Everything

proj func 9% TB 1/2 1/2
proj macros 1% TB - Everything

proj structures 1% TB - Everything
scoreboards 2% TB - Everything
singleplayer 1% DR Everything -

zombies 8% DR Everything -

T5G03 13

LabWars - Final report (LCOM 2019/20)

4 Implementation details

4.1 Object-oriented programming

Object-oriented programming was implemented to its greatest extent possible. Classes were declared using
the typedef struct expression, and their public methods declared in the corresponding header file, always
requiring as first argument a pointer/const pointer to that class. Classes were defined in the corresponding
source file, and private member functions were defined as static.

The majority of entities were encapsulated in classes.

4.2 XPM and XPM2

The extensive use of large XPMs by simply including them with an #include directive gives rise to large
executable files, besides making it harder to change the used XPMs without recompiling the project.

The XPM2 file format is similar to XPM, except it is stripped from all the C syntax, making it a plain
text file. This file format has the main advantage of being easy to load on runtime, unlike XPM that would
require extensive parsing.

To use the XPM2 file format, two functions xpm save to xpm2 and xpm load xpm2 were implemented; the
first one to convert XPM files to XPM2 files, and the second one was used in the project to load the XPM
data (as an array of C-strings) from the XPM2 file format.

4.3 Communication protocols

4.3.1 Non-Critical Transmission Protocol

NCTP was designed to encapsulate the basic UART functions that were developed, by providing a set of
middle-level functions that allow communication between computers.

NCTP allows to send a message to another computer through the function nctp send, which sends the
contents of a set of memory blocks as a single message. The first argument is the number of memory blocks,
followed by an array of pointers to void denoting the beginning of each memory block, and an array of sizes,
where sz[i] is the number of bytes of the block starting at ptr[i] that should be sent. On receiving, NCTP
calls a user-provided function to interpret the message.

NCTP uses queues on transmission and receiving. When a Tx interrupt occurs, NCTP tries to send as
many chars of the transmission queue as possible, and on a Rx interrupts NCTP tries to extract from the
receiving register as many chars as possible, putting them in the receiving queue.

When a complete message is detected, the chars of the message are popped out of the receiving queue,
and passed to the user-provided function for interpretation.

A message is composed of a header, a body and trailling filler chars. The header is a pair of bytes denoting
the size of the body. Then comes the body, and finally the trailling filler chars, whose purpose is to make
sure the total size of the message is a multiple of 4, to prevent problems like a number of final message chars
smaller than the trigger level causing a timeout.

4.3.2 High-Level Transmission Protocol

HLTP fills the gap left by NCTP, by providing a way to interpret messages. For that, HLTP keeps an
enumeration of all the data types it knows, and for each deta type a pair of functions for coding and decoding
a message containing that data type.

HLTP inserts at the beginning of the body a byte indicating the data type, so the message can then be
decoded on the other computer.

T5G03 14

LabWars - Final report (LCOM 2019/20)

4.4 Path-finding

The implementation of the following behaviour of zombies was made using a modified version of Dijkstra’s
path-finding algorithm. Because running a regular Dijkstra every frame causes tremendous lag, a modification
was made; for each pixel, it is known the zombie should go to another pixel. At the beginning, a complete
Dijkstra is ran, and each time the position of the player changes Dijkstra is only ran in the vicinity of the
player.

This solution does not always provide the shortest path, but is significantly more efficient and returns a
working path to the player.

T5G03 15

	User instructions
	How to play
	Main menu
	Single player
	Campaign
	Zombies

	Multiplayer
	Chat

	Project status
	Timer
	Keyboard
	Mouse
	Video card
	Real-Time Clock (RTC)
	Serial port

	Code organization/structure
	libs
	classes
	graph
	uart
	utils
	others

	proj
	campaign
	chat
	ent
	hltp
	proj_func
	others

	Implementation details
	Object-oriented programming
	XPM and XPM2
	Communication protocols
	Non-Critical Transmission Protocol
	High-Level Transmission Protocol

	Path-finding

