root / lab4 / .minix-src / include / x86 / cpu_extended_state.h @ 13
History | View | Annotate | Download (9.42 KB)
1 |
/* $NetBSD: cpu_extended_state.h,v 1.9 2014/02/25 22:16:52 dsl Exp $ */
|
---|---|
2 |
|
3 |
#ifndef _X86_CPU_EXTENDED_STATE_H_
|
4 |
#define _X86_CPU_EXTENDED_STATE_H_
|
5 |
|
6 |
/*
|
7 |
* This file contains definitions of structures that match the memory
|
8 |
* layouts used x86 processors to save floating point registers and other
|
9 |
* extended cpu state.
|
10 |
* This includes registers (etc) used by SSE/SSE2/SSE3/SSSE3/SSE4 and
|
11 |
* the later AVX instructions.
|
12 |
* The definitions are such that any future 'extended state' should
|
13 |
* be handled (provided the kernel doesn't need to know the actual contents.
|
14 |
*
|
15 |
* The actual structures the cpu accesses must be aligned to 16 for
|
16 |
* FXSAVE and 64 for XSAVE. The types aren't aligned because copies
|
17 |
* do not need extra alignment.
|
18 |
*
|
19 |
* The slightly different layout saved by the i387 fsave in also defined.
|
20 |
* This is only normally written by pre Pentium II type cpus that don't
|
21 |
* support the fxsave instruction.
|
22 |
*
|
23 |
* Associated save instructions:
|
24 |
* FNSAVE: Saves x87 state in 108 bytes (original i387 layout).
|
25 |
* Then reinitialies the fpu.
|
26 |
* FSAVE: Encodes to FWAIT followed by FNSAVE.
|
27 |
* FXSAVE: Saves the x87 state and XMM (aka SSE) registers to the
|
28 |
* first 448 (max) bytes of a 512 byte area.
|
29 |
* This layout does not match that written by FNSAVE.
|
30 |
* XSAVE: Uses the same layout for the x87 and XMM registers,
|
31 |
* followed by a 64byte header and separate save areas
|
32 |
* for additional extended cpu state.
|
33 |
* The x87 state is always saved, the others conditionally.
|
34 |
* XSAVEOPT: As XSAVE but (IIRC) only writes the registers blocks
|
35 |
* that have been modified.
|
36 |
*/
|
37 |
|
38 |
#ifdef __lint__
|
39 |
/* Lint has different packing rules and doesn't understand __aligned() */
|
40 |
#define __CTASSERT_NOLINT(x) __CTASSERT(1) |
41 |
#else
|
42 |
#define __CTASSERT_NOLINT(x) __CTASSERT(x)
|
43 |
#endif
|
44 |
|
45 |
/*
|
46 |
* Layout for code/data pointers relating to FP exceptions.
|
47 |
* Marked 'packed' because they aren't always 64bit aligned.
|
48 |
* Since the x86 cpu supports misaligned accesses it isn't
|
49 |
* worth avoiding the 'packed' attribute.
|
50 |
*/
|
51 |
union fp_addr {
|
52 |
uint64_t fa_64; /* Linear address for 64bit systems */
|
53 |
struct {
|
54 |
uint32_t fa_off; /* linear address for 32 bit */
|
55 |
uint16_t fa_seg; /* code/data (etc) segment */
|
56 |
uint16_t fa_opcode; /* last opcode (sometimes) */
|
57 |
} fa_32; |
58 |
} __packed __aligned(4);
|
59 |
|
60 |
/* The x87 registers are 80 bits */
|
61 |
struct fpacc87 {
|
62 |
uint64_t f87_mantissa; /* mantissa */
|
63 |
uint16_t f87_exp_sign; /* exponent and sign */
|
64 |
} __packed __aligned(2);
|
65 |
|
66 |
/* The x87 registers padded out to 16 bytes for fxsave */
|
67 |
struct fpaccfx {
|
68 |
struct fpacc87 r __aligned(16); |
69 |
}; |
70 |
|
71 |
/* The SSE/SSE2 registers are 128 bits */
|
72 |
struct xmmreg {
|
73 |
uint8_t xmm_bytes[16];
|
74 |
}; |
75 |
|
76 |
/* The AVX registers are 256 bits, but the low bits are the xmmregs */
|
77 |
struct ymmreg {
|
78 |
uint8_t ymm_bytes[16];
|
79 |
}; |
80 |
|
81 |
/*
|
82 |
* Floating point unit registers (fsave instruction).
|
83 |
* The s87_ac[] and fx_87_ac[] are relative to the stack top.
|
84 |
* The 'tag word' contains 2 bits per register and refers to
|
85 |
* absolute register numbers.
|
86 |
* The cpu sets the tag values 0b01 (zero) and 0b10 (special) when a value
|
87 |
* is loaded. The software need only set 0b00 (used) and 0xb11 (unused).
|
88 |
* The fxsave 'Abridged tag word' in inverted.
|
89 |
*/
|
90 |
struct save87 {
|
91 |
uint16_t s87_cw __aligned(4); /* control word (16bits) */ |
92 |
uint16_t s87_sw __aligned(4); /* status word (16bits) */ |
93 |
uint16_t s87_tw __aligned(4); /* tag word (16bits) */ |
94 |
union fp_addr s87_ip; /* floating point instruction pointer */ |
95 |
#define s87_opcode s87_ip.fa_32.fa_opcode /* opcode last executed (11bits) */ |
96 |
union fp_addr s87_dp; /* floating operand offset */ |
97 |
struct fpacc87 s87_ac[8]; /* accumulator contents, 0-7 */ |
98 |
}; |
99 |
__CTASSERT_NOLINT(sizeof (struct save87) == 108); |
100 |
|
101 |
/* FPU/MMX/SSE/SSE2 context */
|
102 |
struct fxsave {
|
103 |
/*0*/ uint16_t fx_cw; /* FPU Control Word */ |
104 |
uint16_t fx_sw; /* FPU Status Word */
|
105 |
uint8_t fx_tw; /* FPU Tag Word (abridged) */
|
106 |
uint16_t fx_opcode; /* FPU Opcode */
|
107 |
union fp_addr fx_ip; /* FPU Instruction Pointer */ |
108 |
/*16*/ union fp_addr fx_dp; /* FPU Data pointer */ |
109 |
uint32_t fx_mxcsr; /* MXCSR Register State */
|
110 |
uint32_t fx_mxcsr_mask; |
111 |
struct fpaccfx fx_87_ac[8]; /* 8 x87 registers */ |
112 |
struct xmmreg fx_xmm[16]; /* XMM regs (8 in 32bit modes) */ |
113 |
uint8_t fx_rsvd[48];
|
114 |
uint8_t fx_kernel[48]; /* Not written by the hardware */ |
115 |
} __aligned(16);
|
116 |
__CTASSERT_NOLINT(sizeof (struct fxsave) == 512); |
117 |
|
118 |
/* The end of the fsave buffer can be used by the operating system */
|
119 |
struct fxsave_os {
|
120 |
uint8_t fxo_fxsave[512 - 48]; |
121 |
/* 48 bytes available, NB copied to/from userspace */
|
122 |
uint16_t fxo_dflt_cw; /* Control word for signal handlers */
|
123 |
}; |
124 |
|
125 |
/*
|
126 |
* For XSAVE a 64byte header follows the fxsave data.
|
127 |
* Currently it only contains one field of which only 3 bits are defined.
|
128 |
* Some other parts must be zero - zero it all.
|
129 |
*
|
130 |
* The xsh_xstate_bv bits match those of XCR0:
|
131 |
* XCR0_X87 0x00000001 x87 FPU/MMX state
|
132 |
* XCR0_SSE 0x00000002 SSE state
|
133 |
* XCR0_AVX 0x00000004 AVX state (ymmn registers)
|
134 |
*
|
135 |
* The offsets and sizes of any save areas can be found by reading
|
136 |
* the correct control registers.
|
137 |
*/
|
138 |
|
139 |
struct xsave_header {
|
140 |
uint64_t xsh_fxsave[64]; /* to align in the union */ |
141 |
uint64_t xsh_xstate_bv; /* bitmap of saved sub structures */
|
142 |
uint64_t xsh_rsrvd[2]; /* must be zero */ |
143 |
uint64_t xsh_reserved[5];/* best if zero */ |
144 |
}; |
145 |
__CTASSERT(sizeof (struct xsave_header) == 512 + 64); |
146 |
|
147 |
/*
|
148 |
* The ymm save area actually follows the xsave_header.
|
149 |
*/
|
150 |
struct xsave_ymm {
|
151 |
struct ymmreg xs_ymm[16]; /* High bits of YMM registers */ |
152 |
}; |
153 |
__CTASSERT(sizeof (struct xsave_ymm) == 256); |
154 |
|
155 |
/*
|
156 |
* The following union is placed at the end of the pcb.
|
157 |
* It is defined this way to separate the definitions and to
|
158 |
* minimise the number of union/struct selectors.
|
159 |
* NB: Some userspace stuff (eg firefox) uses it to parse ucontext.
|
160 |
*/
|
161 |
union savefpu {
|
162 |
struct save87 sv_87;
|
163 |
struct fxsave sv_xmm;
|
164 |
#ifdef _KERNEL
|
165 |
struct fxsave_os sv_os;
|
166 |
struct xsave_header sv_xsave_hdr;
|
167 |
#endif
|
168 |
}; |
169 |
|
170 |
/*
|
171 |
* 80387 control and status word bits
|
172 |
*
|
173 |
* The only reference I can find to bits 0x40 and 0x80 in the control word
|
174 |
* is for the Weitek 1167/3167.
|
175 |
* I (dsl) can't find why the default word has 0x40 set.
|
176 |
*
|
177 |
* A stack error is signalled as an INVOP that also sets STACK_FAULT
|
178 |
* (other INVOP do not clear STACK_FAULT).
|
179 |
*/
|
180 |
/* Interrupt masks (set masks interrupt) and status bits */
|
181 |
#define EN_SW_INVOP 0x0001 /* Invalid operation */ |
182 |
#define EN_SW_DENORM 0x0002 /* Denormalized operand */ |
183 |
#define EN_SW_ZERODIV 0x0004 /* Divide by zero */ |
184 |
#define EN_SW_OVERFLOW 0x0008 /* Overflow */ |
185 |
#define EN_SW_UNDERFLOW 0x0010 /* Underflow */ |
186 |
#define EN_SW_PRECLOSS 0x0020 /* Loss of precision */ |
187 |
/* Status word bits (reserved in control word) */
|
188 |
#define EN_SW_STACK_FAULT 0x0040 /* Stack under/overflow */ |
189 |
#define EN_SW_ERROR_SUMMARY 0x0080 /* Unmasked error has ocurred */ |
190 |
/* Control bits (badly named) */
|
191 |
#define EN_SW_CTL_PREC 0x0300 /* Precision control */ |
192 |
#define EN_SW_PREC_24 0x0000 /* Single precision */ |
193 |
#define EN_SW_PREC_53 0x0200 /* Double precision */ |
194 |
#define EN_SW_PREC_64 0x0300 /* Extended precision */ |
195 |
#define EN_SW_CTL_ROUND 0x0c00 /* Rounding control */ |
196 |
#define EN_SW_ROUND_EVEN 0x0000 /* Round to nearest even */ |
197 |
#define EN_SW_ROUND_DOWN 0x0400 /* Round towards minus infinity */ |
198 |
#define EN_SW_ROUND_UP 0x0800 /* Round towards plus infinity */ |
199 |
#define EN_SW_ROUND_ZERO 0x0c00 /* Round towards zero (truncates) */ |
200 |
#define EN_SW_CTL_INF 0x1000 /* Infinity control, not used */ |
201 |
|
202 |
/*
|
203 |
* The standard 0x87 control word from finit is 0x37F, giving:
|
204 |
* round to nearest
|
205 |
* 64-bit precision
|
206 |
* all exceptions masked.
|
207 |
*
|
208 |
* NetBSD used to select:
|
209 |
* round to nearest
|
210 |
* 53-bit precision
|
211 |
* all exceptions masked.
|
212 |
* Stating: 64-bit precision often gives bad results with high level
|
213 |
* languages because it makes the results of calculations depend on whether
|
214 |
* intermediate values are stored in memory or in FPU registers.
|
215 |
* Also some 'pathological divisions' give an error in the LSB because
|
216 |
* the value is first rounded up when the 64bit mantissa is generated,
|
217 |
* and then again when it is truncated to 53 bits.
|
218 |
*
|
219 |
* However the C language explicitly allows the extra precision.
|
220 |
*
|
221 |
* The iBCS control word has underflow, overflow, zero divide, and invalid
|
222 |
* operation exceptions unmasked. But that causes an unexpected exception
|
223 |
* in the test program 'paranoia' and makes denormals useless (DBL_MIN / 2
|
224 |
* underflows). It doesn't make a lot of sense to trap underflow without
|
225 |
* trapping denormals.
|
226 |
*/
|
227 |
#define __INITIAL_NPXCW__ 0x037f |
228 |
/* Modern NetBSD uses the default control word.. */
|
229 |
#define __NetBSD_NPXCW__ __INITIAL_NPXCW__
|
230 |
/* NetBSD before 6.99.26 forced IEEE double precision. */
|
231 |
#define __NetBSD_COMPAT_NPXCW__ 0x127f |
232 |
/* FreeBSD leaves some exceptions unmasked as well. */
|
233 |
#define __FreeBSD_NPXCW__ 0x1272 |
234 |
/* iBCS2 goes a bit further and leaves the underflow exception unmasked. */
|
235 |
#define __iBCS2_NPXCW__ 0x0262 |
236 |
/* Linux just uses the default control word. */
|
237 |
#define __Linux_NPXCW__ __INITIAL_NPXCW__
|
238 |
/* SVR4 uses the same control word as iBCS2. */
|
239 |
#define __SVR4_NPXCW__ 0x0262 |
240 |
|
241 |
/*
|
242 |
* The default MXCSR value at reset is 0x1f80, IA-32 Instruction
|
243 |
* Set Reference, pg. 3-369.
|
244 |
*
|
245 |
* The low 6 bits of the mxcsr are the fp status bits (same order as x87).
|
246 |
* Bit 6 is 'denormals are zero' (speeds up calculations).
|
247 |
* Bits 7-16 are the interrupt mask bits (same order, 1 to mask).
|
248 |
* Bits 13 and 14 are rounding control.
|
249 |
* Bit 15 is 'flush to zero' - affects underflow.
|
250 |
* Bits 16-31 must be zero.
|
251 |
*/
|
252 |
#define __INITIAL_MXCSR__ 0x1f80 |
253 |
#define __INITIAL_MXCSR_MASK__ 0xffbf |
254 |
|
255 |
#endif /* _X86_CPU_EXTENDED_STATE_H_ */ |