Project

General

Profile

Statistics
| Revision:

root / lab4 / .minix-src / include / ufs / lfs / lfs_accessors.h

History | View | Annotate | Download (46.5 KB)

1
/*        $NetBSD: lfs_accessors.h,v 1.36 2015/10/03 08:29:48 dholland Exp $        */
2

    
3
/*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
4
/*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
5
/*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
6

    
7
/*-
8
 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9
 * All rights reserved.
10
 *
11
 * This code is derived from software contributed to The NetBSD Foundation
12
 * by Konrad E. Schroder <perseant@hhhh.org>.
13
 *
14
 * Redistribution and use in source and binary forms, with or without
15
 * modification, are permitted provided that the following conditions
16
 * are met:
17
 * 1. Redistributions of source code must retain the above copyright
18
 *    notice, this list of conditions and the following disclaimer.
19
 * 2. Redistributions in binary form must reproduce the above copyright
20
 *    notice, this list of conditions and the following disclaimer in the
21
 *    documentation and/or other materials provided with the distribution.
22
 *
23
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33
 * POSSIBILITY OF SUCH DAMAGE.
34
 */
35
/*-
36
 * Copyright (c) 1991, 1993
37
 *        The Regents of the University of California.  All rights reserved.
38
 *
39
 * Redistribution and use in source and binary forms, with or without
40
 * modification, are permitted provided that the following conditions
41
 * are met:
42
 * 1. Redistributions of source code must retain the above copyright
43
 *    notice, this list of conditions and the following disclaimer.
44
 * 2. Redistributions in binary form must reproduce the above copyright
45
 *    notice, this list of conditions and the following disclaimer in the
46
 *    documentation and/or other materials provided with the distribution.
47
 * 3. Neither the name of the University nor the names of its contributors
48
 *    may be used to endorse or promote products derived from this software
49
 *    without specific prior written permission.
50
 *
51
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61
 * SUCH DAMAGE.
62
 *
63
 *        @(#)lfs.h        8.9 (Berkeley) 5/8/95
64
 */
65
/*
66
 * Copyright (c) 2002 Networks Associates Technology, Inc.
67
 * All rights reserved.
68
 *
69
 * This software was developed for the FreeBSD Project by Marshall
70
 * Kirk McKusick and Network Associates Laboratories, the Security
71
 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72
 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73
 * research program
74
 *
75
 * Copyright (c) 1982, 1989, 1993
76
 *        The Regents of the University of California.  All rights reserved.
77
 * (c) UNIX System Laboratories, Inc.
78
 * All or some portions of this file are derived from material licensed
79
 * to the University of California by American Telephone and Telegraph
80
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81
 * the permission of UNIX System Laboratories, Inc.
82
 *
83
 * Redistribution and use in source and binary forms, with or without
84
 * modification, are permitted provided that the following conditions
85
 * are met:
86
 * 1. Redistributions of source code must retain the above copyright
87
 *    notice, this list of conditions and the following disclaimer.
88
 * 2. Redistributions in binary form must reproduce the above copyright
89
 *    notice, this list of conditions and the following disclaimer in the
90
 *    documentation and/or other materials provided with the distribution.
91
 * 3. Neither the name of the University nor the names of its contributors
92
 *    may be used to endorse or promote products derived from this software
93
 *    without specific prior written permission.
94
 *
95
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105
 * SUCH DAMAGE.
106
 *
107
 *        @(#)dinode.h        8.9 (Berkeley) 3/29/95
108
 */
109
/*
110
 * Copyright (c) 1982, 1986, 1989, 1993
111
 *        The Regents of the University of California.  All rights reserved.
112
 * (c) UNIX System Laboratories, Inc.
113
 * All or some portions of this file are derived from material licensed
114
 * to the University of California by American Telephone and Telegraph
115
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116
 * the permission of UNIX System Laboratories, Inc.
117
 *
118
 * Redistribution and use in source and binary forms, with or without
119
 * modification, are permitted provided that the following conditions
120
 * are met:
121
 * 1. Redistributions of source code must retain the above copyright
122
 *    notice, this list of conditions and the following disclaimer.
123
 * 2. Redistributions in binary form must reproduce the above copyright
124
 *    notice, this list of conditions and the following disclaimer in the
125
 *    documentation and/or other materials provided with the distribution.
126
 * 3. Neither the name of the University nor the names of its contributors
127
 *    may be used to endorse or promote products derived from this software
128
 *    without specific prior written permission.
129
 *
130
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140
 * SUCH DAMAGE.
141
 *
142
 *        @(#)dir.h        8.5 (Berkeley) 4/27/95
143
 */
144

    
145
#ifndef _UFS_LFS_LFS_ACCESSORS_H_
146
#define _UFS_LFS_LFS_ACCESSORS_H_
147

    
148
#if defined(_KERNEL_OPT)
149
#include "opt_lfs.h"
150
#endif
151

    
152
#include <sys/bswap.h>
153

    
154
#if !defined(_KERNEL) && !defined(_STANDALONE)
155
#include <assert.h>
156
#define KASSERT assert
157
#endif
158

    
159
/*
160
 * STRUCT_LFS is used by the libsa code to get accessors that work
161
 * with struct salfs instead of struct lfs, and by the cleaner to
162
 * get accessors that work with struct clfs.
163
 */
164

    
165
#ifndef STRUCT_LFS
166
#define STRUCT_LFS struct lfs
167
#endif
168

    
169
/*
170
 * byte order
171
 */
172

    
173
/*
174
 * For now at least, the bootblocks shall not be endian-independent.
175
 * We can see later if it fits in the size budget. Also disable the
176
 * byteswapping if LFS_EI is off.
177
 *
178
 * Caution: these functions "know" that bswap16/32/64 are unsigned,
179
 * and if that changes will likely break silently.
180
 */
181

    
182
#if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183
#define LFS_SWAP_int16_t(fs, val) (val)
184
#define LFS_SWAP_int32_t(fs, val) (val)
185
#define LFS_SWAP_int64_t(fs, val) (val)
186
#define LFS_SWAP_uint16_t(fs, val) (val)
187
#define LFS_SWAP_uint32_t(fs, val) (val)
188
#define LFS_SWAP_uint64_t(fs, val) (val)
189
#else
190
#define LFS_SWAP_int16_t(fs, val) \
191
        ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192
#define LFS_SWAP_int32_t(fs, val) \
193
        ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194
#define LFS_SWAP_int64_t(fs, val) \
195
        ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196
#define LFS_SWAP_uint16_t(fs, val) \
197
        ((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198
#define LFS_SWAP_uint32_t(fs, val) \
199
        ((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200
#define LFS_SWAP_uint64_t(fs, val) \
201
        ((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202
#endif
203

    
204
/*
205
 * For handling directories we will need to know if the volume is
206
 * little-endian.
207
 */
208
#if BYTE_ORDER == LITTLE_ENDIAN
209
#define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210
#else
211
#define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212
#endif
213

    
214

    
215
/*
216
 * directories
217
 */
218

    
219
#define LFS_DIRHEADERSIZE(fs) \
220
        ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
221

    
222
/*
223
 * The LFS_DIRSIZ macro gives the minimum record length which will hold
224
 * the directory entry.  This requires the amount of space in struct lfs_direct
225
 * without the d_name field, plus enough space for the name with a terminating
226
 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
227
 */
228
#define        LFS_DIRECTSIZ(fs, namlen) \
229
        (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
230

    
231
/*
232
 * The size of the largest possible directory entry. This is
233
 * used by ulfs_dirhash to figure the size of an array, so we
234
 * need a single constant value true for both lfs32 and lfs64.
235
 */
236
#define LFS_MAXDIRENTRYSIZE \
237
        (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
238

    
239
#if (BYTE_ORDER == LITTLE_ENDIAN)
240
#define LFS_OLDDIRSIZ(oldfmt, dp, needswap)        \
241
    (((oldfmt) && !(needswap)) ?                \
242
    LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
243
#else
244
#define LFS_OLDDIRSIZ(oldfmt, dp, needswap)        \
245
    (((oldfmt) && (needswap)) ?                        \
246
    LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
247
#endif
248

    
249
#define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
250

    
251
/* Constants for the first argument of LFS_OLDDIRSIZ */
252
#define LFS_OLDDIRFMT        1
253
#define LFS_NEWDIRFMT        0
254

    
255
#define LFS_NEXTDIR(fs, dp) \
256
        ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
257

    
258
static __unused inline char *
259
lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
260
{
261
        if (fs->lfs_is64) {
262
                return (char *)(&dh->u_64 + 1);
263
        } else {
264
                return (char *)(&dh->u_32 + 1);
265
        }
266
}
267

    
268
static __unused inline uint64_t
269
lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
270
{
271
        if (fs->lfs_is64) {
272
                uint64_t ino;
273

    
274
                /*
275
                 * XXX we can probably write this in a way that's both
276
                 * still legal and generates better code.
277
                 */
278
                memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
279
                memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
280
                       &dh->u_64.dh_inoB,
281
                       sizeof(dh->u_64.dh_inoB));
282
                return LFS_SWAP_uint64_t(fs, ino);
283
        } else {
284
                return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
285
        }
286
}
287

    
288
static __unused inline uint16_t
289
lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
290
{
291
        if (fs->lfs_is64) {
292
                return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
293
        } else {
294
                return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
295
        }
296
}
297

    
298
static __unused inline uint8_t
299
lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
300
{
301
        if (fs->lfs_is64) {
302
                KASSERT(fs->lfs_hasolddirfmt == 0);
303
                return dh->u_64.dh_type;
304
        } else if (fs->lfs_hasolddirfmt) {
305
                return LFS_DT_UNKNOWN;
306
        } else {
307
                return dh->u_32.dh_type;
308
        }
309
}
310

    
311
static __unused inline uint8_t
312
lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
313
{
314
        if (fs->lfs_is64) {
315
                KASSERT(fs->lfs_hasolddirfmt == 0);
316
                return dh->u_64.dh_type;
317
        } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
318
                /* low-order byte of old 16-bit namlen field */
319
                return dh->u_32.dh_type;
320
        } else {
321
                return dh->u_32.dh_namlen;
322
        }
323
}
324

    
325
static __unused inline void
326
lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
327
{
328
        if (fs->lfs_is64) {
329

    
330
                ino = LFS_SWAP_uint64_t(fs, ino);
331
                /*
332
                 * XXX we can probably write this in a way that's both
333
                 * still legal and generates better code.
334
                 */
335
                memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
336
                memcpy(&dh->u_64.dh_inoB,
337
                       (char *)&ino + sizeof(dh->u_64.dh_inoA),
338
                       sizeof(dh->u_64.dh_inoB));
339
        } else {
340
                dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
341
        }
342
}
343

    
344
static __unused inline void
345
lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
346
{
347
        if (fs->lfs_is64) {
348
                dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
349
        } else {
350
                dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
351
        }
352
}
353

    
354
static __unused inline void
355
lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
356
{
357
        if (fs->lfs_is64) {
358
                KASSERT(fs->lfs_hasolddirfmt == 0);
359
                dh->u_64.dh_type = type;
360
        } else if (fs->lfs_hasolddirfmt) {
361
                /* do nothing */
362
                return;
363
        } else {
364
                dh->u_32.dh_type = type;
365
        }
366
}
367

    
368
static __unused inline void
369
lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
370
{
371
        if (fs->lfs_is64) {
372
                KASSERT(fs->lfs_hasolddirfmt == 0);
373
                dh->u_64.dh_namlen = namlen;
374
        } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
375
                /* low-order byte of old 16-bit namlen field */
376
                dh->u_32.dh_type = namlen;
377
        } else {
378
                dh->u_32.dh_namlen = namlen;
379
        }
380
}
381

    
382
static __unused inline void
383
lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
384
                unsigned namlen, unsigned reclen)
385
{
386
        unsigned spacelen;
387

    
388
        KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
389
        spacelen = reclen - LFS_DIRHEADERSIZE(fs);
390

    
391
        /* must always be at least 1 byte as a null terminator */
392
        KASSERT(spacelen > namlen);
393

    
394
        memcpy(dest, src, namlen);
395
        memset(dest + namlen, '\0', spacelen - namlen);
396
}
397

    
398
static __unused LFS_DIRHEADER *
399
lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
400
{
401
        /* XXX blah, be nice to have a way to do this w/o casts */
402
        if (fs->lfs_is64) {
403
                return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
404
        } else {
405
                return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
406
        }
407
}
408

    
409
static __unused char *
410
lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
411
{
412
        if (fs->lfs_is64) {
413
                return dt->u_64.dotdot_name;
414
        } else {
415
                return dt->u_32.dotdot_name;
416
        }
417
}
418

    
419
/*
420
 * dinodes
421
 */
422

    
423
/*
424
 * Maximum length of a symlink that can be stored within the inode.
425
 */
426
#define LFS32_MAXSYMLINKLEN        ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
427
#define LFS64_MAXSYMLINKLEN        ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
428

    
429
#define LFS_MAXSYMLINKLEN(fs) \
430
        ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
431

    
432
#define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
433

    
434
#define DINO_IN_BLOCK(fs, base, ix) \
435
        ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
436

    
437
static __unused inline void
438
lfs_copy_dinode(STRUCT_LFS *fs,
439
    union lfs_dinode *dst, const union lfs_dinode *src)
440
{
441
        /*
442
         * We can do structure assignment of the structs, but not of
443
         * the whole union, as the union is the size of the (larger)
444
         * 64-bit struct and on a 32-bit fs the upper half of it might
445
         * be off the end of a buffer or otherwise invalid.
446
         */
447
        if (fs->lfs_is64) {
448
                dst->u_64 = src->u_64;
449
        } else {
450
                dst->u_32 = src->u_32;
451
        }
452
}
453

    
454
#define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
455
        static __unused inline type                                \
456
        lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
457
        {                                                        \
458
                if (fs->lfs_is64) {                                \
459
                        return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
460
                } else {                                        \
461
                        return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
462
                }                                                \
463
        }                                                        \
464
        static __unused inline void                                \
465
        lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
466
        {                                                        \
467
                if (fs->lfs_is64) {                                \
468
                        type *p = &dip->u_64.di_##field;        \
469
                        (void)p;                                \
470
                        dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
471
                } else {                                        \
472
                        type32 *p = &dip->u_32.di_##field;        \
473
                        (void)p;                                \
474
                        dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
475
                }                                                \
476
        }                                                        \
477

    
478
LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
479
LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
480
LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
481
LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
482
LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
483
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
484
LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
485
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
486
LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
487
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
488
LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
489
LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
490
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
491
LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
492
LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
493

    
494
/* XXX this should be done differently (it's a fake field) */
495
LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
496

    
497
static __unused inline daddr_t
498
lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
499
{
500
        KASSERT(ix < ULFS_NDADDR);
501
        if (fs->lfs_is64) {
502
                return dip->u_64.di_db[ix];
503
        } else {
504
                /* note: this must sign-extend or UNWRITTEN gets trashed */
505
                return dip->u_32.di_db[ix];
506
        }
507
}
508

    
509
static __unused inline daddr_t
510
lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
511
{
512
        KASSERT(ix < ULFS_NIADDR);
513
        if (fs->lfs_is64) {
514
                return dip->u_64.di_ib[ix];
515
        } else {
516
                /* note: this must sign-extend or UNWRITTEN gets trashed */
517
                return dip->u_32.di_ib[ix];
518
        }
519
}
520

    
521
static __unused inline void
522
lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
523
{
524
        KASSERT(ix < ULFS_NDADDR);
525
        if (fs->lfs_is64) {
526
                dip->u_64.di_db[ix] = val;
527
        } else {
528
                dip->u_32.di_db[ix] = val;
529
        }
530
}
531

    
532
static __unused inline void
533
lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
534
{
535
        KASSERT(ix < ULFS_NIADDR);
536
        if (fs->lfs_is64) {
537
                dip->u_64.di_ib[ix] = val;
538
        } else {
539
                dip->u_32.di_ib[ix] = val;
540
        }
541
}
542

    
543
/* birthtime is present only in the 64-bit inode */
544
static __unused inline void
545
lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
546
    const struct timespec *ts)
547
{
548
        if (fs->lfs_is64) {
549
                dip->u_64.di_birthtime = ts->tv_sec;
550
                dip->u_64.di_birthnsec = ts->tv_nsec;
551
        } else {
552
                /* drop it on the floor */
553
        }
554
}
555

    
556
/*
557
 * indirect blocks
558
 */
559

    
560
static __unused inline daddr_t
561
lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
562
{
563
        if (fs->lfs_is64) {
564
                // XXX re-enable these asserts after reorging this file
565
                //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
566
                return (daddr_t)(((int64_t *)block)[ix]);
567
        } else {
568
                //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
569
                /* must sign-extend or UNWRITTEN gets trashed */
570
                return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
571
        }
572
}
573

    
574
static __unused inline void
575
lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
576
{
577
        if (fs->lfs_is64) {
578
                //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
579
                ((int64_t *)block)[ix] = val;
580
        } else {
581
                //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
582
                ((int32_t *)block)[ix] = val;
583
        }
584
}
585

    
586
/*
587
 * "struct buf" associated definitions
588
 */
589

    
590
# define LFS_LOCK_BUF(bp) do {                                                \
591
        if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {        \
592
                mutex_enter(&lfs_lock);                                        \
593
                ++locked_queue_count;                                        \
594
                locked_queue_bytes += bp->b_bufsize;                        \
595
                mutex_exit(&lfs_lock);                                        \
596
        }                                                                \
597
        (bp)->b_flags |= B_LOCKED;                                        \
598
} while (0)
599

    
600
# define LFS_UNLOCK_BUF(bp) do {                                        \
601
        if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {        \
602
                mutex_enter(&lfs_lock);                                        \
603
                --locked_queue_count;                                        \
604
                locked_queue_bytes -= bp->b_bufsize;                        \
605
                if (locked_queue_count < LFS_WAIT_BUFS &&                \
606
                    locked_queue_bytes < LFS_WAIT_BYTES)                \
607
                        cv_broadcast(&locked_queue_cv);                        \
608
                mutex_exit(&lfs_lock);                                        \
609
        }                                                                \
610
        (bp)->b_flags &= ~B_LOCKED;                                        \
611
} while (0)
612

    
613
/*
614
 * "struct inode" associated definitions
615
 */
616

    
617
#define LFS_SET_UINO(ip, flags) do {                                        \
618
        if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))        \
619
                lfs_sb_adduinodes((ip)->i_lfs, 1);                        \
620
        if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))        \
621
                lfs_sb_adduinodes((ip)->i_lfs, 1);                        \
622
        if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))        \
623
                lfs_sb_adduinodes((ip)->i_lfs, 1);                        \
624
        (ip)->i_flag |= (flags);                                        \
625
} while (0)
626

    
627
#define LFS_CLR_UINO(ip, flags) do {                                        \
628
        if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))        \
629
                lfs_sb_subuinodes((ip)->i_lfs, 1);                        \
630
        if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))        \
631
                lfs_sb_subuinodes((ip)->i_lfs, 1);                        \
632
        if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))        \
633
                lfs_sb_subuinodes((ip)->i_lfs, 1);                        \
634
        (ip)->i_flag &= ~(flags);                                        \
635
        if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {                        \
636
                panic("lfs_uinodes < 0");                                \
637
        }                                                                \
638
} while (0)
639

    
640
#define LFS_ITIMES(ip, acc, mod, cre) \
641
        while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
642
                lfs_itimes(ip, acc, mod, cre)
643

    
644
/*
645
 * On-disk and in-memory checkpoint segment usage structure.
646
 */
647

    
648
#define        SEGUPB(fs)        (lfs_sb_getsepb(fs))
649
#define        SEGTABSIZE_SU(fs)                                                \
650
        ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
651

    
652
#ifdef _KERNEL
653
# define SHARE_IFLOCK(F)                                                 \
654
  do {                                                                        \
655
        rw_enter(&(F)->lfs_iflock, RW_READER);                                \
656
  } while(0)
657
# define UNSHARE_IFLOCK(F)                                                \
658
  do {                                                                        \
659
        rw_exit(&(F)->lfs_iflock);                                        \
660
  } while(0)
661
#else /* ! _KERNEL */
662
# define SHARE_IFLOCK(F)
663
# define UNSHARE_IFLOCK(F)
664
#endif /* ! _KERNEL */
665

    
666
/* Read in the block with a specific segment usage entry from the ifile. */
667
#define        LFS_SEGENTRY(SP, F, IN, BP) do {                                \
668
        int _e;                                                                \
669
        SHARE_IFLOCK(F);                                                \
670
        VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;                        \
671
        if ((_e = bread((F)->lfs_ivnode,                                \
672
            ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),                \
673
            lfs_sb_getbsize(F), 0, &(BP))) != 0)                        \
674
                panic("lfs: ifile read: %d", _e);                        \
675
        if (lfs_sb_getversion(F) == 1)                                        \
676
                (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +                \
677
                        ((IN) & (lfs_sb_getsepb(F) - 1)));                \
678
        else                                                                \
679
                (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
680
        UNSHARE_IFLOCK(F);                                                \
681
} while (0)
682

    
683
#define LFS_WRITESEGENTRY(SP, F, IN, BP) do {                                \
684
        if ((SP)->su_nbytes == 0)                                        \
685
                (SP)->su_flags |= SEGUSE_EMPTY;                                \
686
        else                                                                \
687
                (SP)->su_flags &= ~SEGUSE_EMPTY;                        \
688
        (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;        \
689
        LFS_BWRITE_LOG(BP);                                                \
690
} while (0)
691

    
692
/*
693
 * FINFO (file info) entries.
694
 */
695

    
696
/* Size of an on-disk block pointer, e.g. in an indirect block. */
697
/* XXX: move to a more suitable location in this file */
698
#define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
699

    
700
/* Size of an on-disk inode number. */
701
/* XXX: move to a more suitable location in this file */
702
#define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
703

    
704
/* size of a FINFO, without the block pointers */
705
#define        FINFOSIZE(fs)        ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
706

    
707
/* Full size of the provided FINFO record, including its block pointers. */
708
#define FINFO_FULLSIZE(fs, fip) \
709
        (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
710

    
711
#define NEXT_FINFO(fs, fip) \
712
        ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
713

    
714
#define LFS_DEF_FI_ACCESSOR(type, type32, field) \
715
        static __unused inline type                                \
716
        lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)                \
717
        {                                                        \
718
                if (fs->lfs_is64) {                                \
719
                        return fip->u_64.fi_##field;                 \
720
                } else {                                        \
721
                        return fip->u_32.fi_##field;                 \
722
                }                                                \
723
        }                                                        \
724
        static __unused inline void                                \
725
        lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
726
        {                                                        \
727
                if (fs->lfs_is64) {                                \
728
                        type *p = &fip->u_64.fi_##field;        \
729
                        (void)p;                                \
730
                        fip->u_64.fi_##field = val;                \
731
                } else {                                        \
732
                        type32 *p = &fip->u_32.fi_##field;        \
733
                        (void)p;                                \
734
                        fip->u_32.fi_##field = val;                \
735
                }                                                \
736
        }                                                        \
737

    
738
LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
739
LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
740
LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
741
LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
742

    
743
static __unused inline daddr_t
744
lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
745
{
746
        void *firstblock;
747

    
748
        firstblock = (char *)fip + FINFOSIZE(fs);
749
        KASSERT(index < lfs_fi_getnblocks(fs, fip));
750
        if (fs->lfs_is64) {
751
                return ((int64_t *)firstblock)[index];
752
        } else {
753
                return ((int32_t *)firstblock)[index];
754
        }
755
}
756

    
757
static __unused inline void
758
lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
759
{
760
        void *firstblock;
761

    
762
        firstblock = (char *)fip + FINFOSIZE(fs);
763
        KASSERT(index < lfs_fi_getnblocks(fs, fip));
764
        if (fs->lfs_is64) {
765
                ((int64_t *)firstblock)[index] = blk;
766
        } else {
767
                ((int32_t *)firstblock)[index] = blk;
768
        }
769
}
770

    
771
/*
772
 * inode info entries (in the segment summary)
773
 */
774

    
775
#define IINFOSIZE(fs)        ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
776

    
777
/* iinfos scroll backward from the end of the segment summary block */
778
#define SEGSUM_IINFOSTART(fs, buf) \
779
        ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
780

    
781
#define NEXTLOWER_IINFO(fs, iip) \
782
        ((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
783

    
784
#define NTH_IINFO(fs, buf, n) \
785
        ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
786

    
787
static __unused inline uint64_t
788
lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
789
{
790
        if (fs->lfs_is64) {
791
                return iip->u_64.ii_block;
792
        } else {
793
                return iip->u_32.ii_block;
794
        }
795
}
796

    
797
static __unused inline void
798
lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
799
{
800
        if (fs->lfs_is64) {
801
                iip->u_64.ii_block = block;
802
        } else {
803
                iip->u_32.ii_block = block;
804
        }
805
}
806

    
807
/*
808
 * Index file inode entries.
809
 */
810

    
811
#define IFILE_ENTRYSIZE(fs) \
812
        ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
813

    
814
/*
815
 * LFSv1 compatibility code is not allowed to touch if_atime, since it
816
 * may not be mapped!
817
 */
818
/* Read in the block with a specific inode from the ifile. */
819
#define        LFS_IENTRY(IP, F, IN, BP) do {                                        \
820
        int _e;                                                                \
821
        SHARE_IFLOCK(F);                                                \
822
        VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;                        \
823
        if ((_e = bread((F)->lfs_ivnode,                                \
824
        (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
825
        lfs_sb_getbsize(F), 0, &(BP))) != 0)                                \
826
                panic("lfs: ifile ino %d read %d", (int)(IN), _e);        \
827
        if ((F)->lfs_is64) {                                                \
828
                (IP) = (IFILE *)((IFILE64 *)(BP)->b_data +                \
829
                                 (IN) % lfs_sb_getifpb(F));                \
830
        } else if (lfs_sb_getversion(F) > 1) {                                \
831
                (IP) = (IFILE *)((IFILE32 *)(BP)->b_data +                \
832
                                (IN) % lfs_sb_getifpb(F));                 \
833
        } else {                                                        \
834
                (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +                \
835
                                 (IN) % lfs_sb_getifpb(F));                \
836
        }                                                                \
837
        UNSHARE_IFLOCK(F);                                                \
838
} while (0)
839
#define LFS_IENTRY_NEXT(IP, F) do { \
840
        if ((F)->lfs_is64) {                                                \
841
                (IP) = (IFILE *)((IFILE64 *)(IP) + 1);                        \
842
        } else if (lfs_sb_getversion(F) > 1) {                                \
843
                (IP) = (IFILE *)((IFILE32 *)(IP) + 1);                        \
844
        } else {                                                        \
845
                (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);                        \
846
        }                                                                \
847
} while (0)
848

    
849
#define LFS_DEF_IF_ACCESSOR(type, type32, field) \
850
        static __unused inline type                                \
851
        lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)                \
852
        {                                                        \
853
                if (fs->lfs_is64) {                                \
854
                        return ifp->u_64.if_##field;                 \
855
                } else {                                        \
856
                        return ifp->u_32.if_##field;                 \
857
                }                                                \
858
        }                                                        \
859
        static __unused inline void                                \
860
        lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
861
        {                                                        \
862
                if (fs->lfs_is64) {                                \
863
                        type *p = &ifp->u_64.if_##field;        \
864
                        (void)p;                                \
865
                        ifp->u_64.if_##field = val;                \
866
                } else {                                        \
867
                        type32 *p = &ifp->u_32.if_##field;        \
868
                        (void)p;                                \
869
                        ifp->u_32.if_##field = val;                \
870
                }                                                \
871
        }                                                        \
872

    
873
LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
874
LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
875
LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
876
LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec);
877
LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
878

    
879
/*
880
 * Cleaner information structure.  This resides in the ifile and is used
881
 * to pass information from the kernel to the cleaner.
882
 */
883

    
884
#define        CLEANSIZE_SU(fs)                                                \
885
        ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
886
                lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
887

    
888
#define LFS_DEF_CI_ACCESSOR(type, type32, field) \
889
        static __unused inline type                                \
890
        lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)        \
891
        {                                                        \
892
                if (fs->lfs_is64) {                                \
893
                        return cip->u_64.field;                 \
894
                } else {                                        \
895
                        return cip->u_32.field;                 \
896
                }                                                \
897
        }                                                        \
898
        static __unused inline void                                \
899
        lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
900
        {                                                        \
901
                if (fs->lfs_is64) {                                \
902
                        type *p = &cip->u_64.field;                \
903
                        (void)p;                                \
904
                        cip->u_64.field = val;                        \
905
                } else {                                        \
906
                        type32 *p = &cip->u_32.field;                \
907
                        (void)p;                                \
908
                        cip->u_32.field = val;                        \
909
                }                                                \
910
        }                                                        \
911

    
912
LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
913
LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
914
LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
915
LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
916
LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
917
LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
918
LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
919

    
920
static __unused inline void
921
lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
922
{
923
        lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
924
        lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
925
}
926

    
927
static __unused inline void
928
lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
929
{
930
        lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
931
        lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
932
}
933

    
934
/* Read in the block with the cleaner info from the ifile. */
935
#define LFS_CLEANERINFO(CP, F, BP) do {                                        \
936
        SHARE_IFLOCK(F);                                                \
937
        VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;                        \
938
        if (bread((F)->lfs_ivnode,                                        \
939
            (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))                        \
940
                panic("lfs: ifile read");                                \
941
        (CP) = (CLEANERINFO *)(BP)->b_data;                                \
942
        UNSHARE_IFLOCK(F);                                                \
943
} while (0)
944

    
945
/*
946
 * Synchronize the Ifile cleaner info with current avail and bfree.
947
 */
948
#define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {                         \
949
    mutex_enter(&lfs_lock);                                                \
950
    if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||        \
951
        lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
952
        fs->lfs_favail) {                                                 \
953
        lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));                         \
954
        lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -        \
955
                fs->lfs_favail);                                         \
956
        if (((bp)->b_flags & B_GATHERED) == 0) {                         \
957
                fs->lfs_flags |= LFS_IFDIRTY;                                \
958
        }                                                                \
959
        mutex_exit(&lfs_lock);                                                \
960
        (void) LFS_BWRITE_LOG(bp); /* Ifile */                                 \
961
    } else {                                                                 \
962
        mutex_exit(&lfs_lock);                                                \
963
        brelse(bp, 0);                                                         \
964
    }                                                                        \
965
} while (0)
966

    
967
/*
968
 * Get the head of the inode free list.
969
 * Always called with the segment lock held.
970
 */
971
#define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {                        \
972
        if (lfs_sb_getversion(FS) > 1) {                                \
973
                LFS_CLEANERINFO((CIP), (FS), (BP));                        \
974
                lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));        \
975
                brelse(BP, 0);                                                \
976
        }                                                                \
977
        *(FREEP) = lfs_sb_getfreehd(FS);                                \
978
} while (0)
979

    
980
#define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {                                \
981
        lfs_sb_setfreehd(FS, VAL);                                        \
982
        if (lfs_sb_getversion(FS) > 1) {                                \
983
                LFS_CLEANERINFO((CIP), (FS), (BP));                        \
984
                lfs_ci_setfree_head(FS, CIP, VAL);                        \
985
                LFS_BWRITE_LOG(BP);                                        \
986
                mutex_enter(&lfs_lock);                                        \
987
                (FS)->lfs_flags |= LFS_IFDIRTY;                                \
988
                mutex_exit(&lfs_lock);                                        \
989
        }                                                                \
990
} while (0)
991

    
992
#define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {                        \
993
        LFS_CLEANERINFO((CIP), (FS), (BP));                                \
994
        *(FREEP) = lfs_ci_getfree_tail(FS, CIP);                        \
995
        brelse(BP, 0);                                                        \
996
} while (0)
997

    
998
#define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {                                \
999
        LFS_CLEANERINFO((CIP), (FS), (BP));                                \
1000
        lfs_ci_setfree_tail(FS, CIP, VAL);                                \
1001
        LFS_BWRITE_LOG(BP);                                                \
1002
        mutex_enter(&lfs_lock);                                                \
1003
        (FS)->lfs_flags |= LFS_IFDIRTY;                                        \
1004
        mutex_exit(&lfs_lock);                                                \
1005
} while (0)
1006

    
1007
/*
1008
 * On-disk segment summary information
1009
 */
1010

    
1011
#define SEGSUM_SIZE(fs) \
1012
        (fs->lfs_is64 ? sizeof(SEGSUM64) : \
1013
         lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1014

    
1015
/*
1016
 * The SEGSUM structure is followed by FINFO structures. Get the pointer
1017
 * to the first FINFO.
1018
 *
1019
 * XXX this can't be a macro yet; this file needs to be resorted.
1020
 */
1021
#if 0
1022
static __unused inline FINFO *
1023
segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1024
{
1025
        return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1026
}
1027
#else
1028
#define SEGSUM_FINFOBASE(fs, ssp) \
1029
        ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1030
#endif
1031

    
1032
#define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1033
        static __unused inline type                                \
1034
        lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)                \
1035
        {                                                        \
1036
                if (fs->lfs_is64) {                                \
1037
                        return ssp->u_64.ss_##field;                 \
1038
                } else {                                        \
1039
                        return ssp->u_32.ss_##field;                 \
1040
                }                                                \
1041
        }                                                        \
1042
        static __unused inline void                                \
1043
        lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1044
        {                                                        \
1045
                if (fs->lfs_is64) {                                \
1046
                        type *p = &ssp->u_64.ss_##field;        \
1047
                        (void)p;                                \
1048
                        ssp->u_64.ss_##field = val;                \
1049
                } else {                                        \
1050
                        type32 *p = &ssp->u_32.ss_##field;        \
1051
                        (void)p;                                \
1052
                        ssp->u_32.ss_##field = val;                \
1053
                }                                                \
1054
        }                                                        \
1055

    
1056
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
1057
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
1058
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
1059
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
1060
LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1061
LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1062
LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1063
LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1064
LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1065
LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1066
LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1067

    
1068
static __unused inline size_t
1069
lfs_ss_getsumstart(STRUCT_LFS *fs)
1070
{
1071
        /* These are actually all the same. */
1072
        if (fs->lfs_is64) {
1073
                return offsetof(SEGSUM64, ss_datasum);
1074
        } else /* if (lfs_sb_getversion(fs) > 1) */ {
1075
                return offsetof(SEGSUM32, ss_datasum);
1076
        } /* else {
1077
                return offsetof(SEGSUM_V1, ss_datasum);
1078
        } */
1079
        /*
1080
         * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1081
         * defined yet.
1082
         */
1083
}
1084

    
1085
static __unused inline uint32_t
1086
lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1087
{
1088
        KASSERT(fs->lfs_is64 == 0);
1089
        /* XXX need to resort this file before we can do this */
1090
        //KASSERT(lfs_sb_getversion(fs) == 1);
1091
        
1092
        return ssp->u_v1.ss_create;
1093
}
1094

    
1095
static __unused inline void
1096
lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1097
{
1098
        KASSERT(fs->lfs_is64 == 0);
1099
        /* XXX need to resort this file before we can do this */
1100
        //KASSERT(lfs_sb_getversion(fs) == 1);
1101
        
1102
        ssp->u_v1.ss_create = val;
1103
}
1104

    
1105

    
1106
/*
1107
 * Super block.
1108
 */
1109

    
1110
/*
1111
 * Generate accessors for the on-disk superblock fields with cpp.
1112
 */
1113

    
1114
#define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1115
        static __unused inline type                                \
1116
        lfs_sb_get##field(STRUCT_LFS *fs)                        \
1117
        {                                                        \
1118
                if (fs->lfs_is64) {                                \
1119
                        return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1120
                } else {                                        \
1121
                        return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1122
                }                                                \
1123
        }                                                        \
1124
        static __unused inline void                                \
1125
        lfs_sb_set##field(STRUCT_LFS *fs, type val)                \
1126
        {                                                        \
1127
                if (fs->lfs_is64) {                                \
1128
                        fs->lfs_dlfs_u.u_64.dlfs_##field = val;        \
1129
                } else {                                        \
1130
                        fs->lfs_dlfs_u.u_32.dlfs_##field = val;        \
1131
                }                                                \
1132
        }                                                        \
1133
        static __unused inline void                                \
1134
        lfs_sb_add##field(STRUCT_LFS *fs, type val)                \
1135
        {                                                        \
1136
                if (fs->lfs_is64) {                                \
1137
                        type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1138
                        *p64 += val;                                \
1139
                } else {                                        \
1140
                        type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1141
                        *p32 += val;                                \
1142
                }                                                \
1143
        }                                                        \
1144
        static __unused inline void                                \
1145
        lfs_sb_sub##field(STRUCT_LFS *fs, type val)                \
1146
        {                                                        \
1147
                if (fs->lfs_is64) {                                \
1148
                        type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1149
                        *p64 -= val;                                \
1150
                } else {                                        \
1151
                        type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1152
                        *p32 -= val;                                \
1153
                }                                                \
1154
        }
1155

    
1156
#define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1157

    
1158
#define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1159
        static __unused inline type                                \
1160
        lfs_sb_get##field(STRUCT_LFS *fs)                        \
1161
        {                                                        \
1162
                if (fs->lfs_is64) {                                \
1163
                        return val64;                                \
1164
                } else {                                        \
1165
                        return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1166
                }                                                \
1167
        }
1168

    
1169
#define lfs_magic lfs_dlfs.dlfs_magic
1170
LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1171
LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1172
LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1173
LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1174
LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1175
LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1176
LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1177
LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1178
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1179
LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1180
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1181
LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1182
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1183
LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1184
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1185
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1186
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1187
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1188
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1189
LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1190
LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1191
LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1192
LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1193
LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1194
LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1195
LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1196
LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1197
LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1198
LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1199
LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1200
LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1201
LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1202
LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1203
LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1204
LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1205
LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1206
LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1207
LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1208
LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1209
LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1210
LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1211
LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1212
LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1213
LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1214
LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1215
LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1216
LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1217
LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1218
LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1219
LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1220
LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1221
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1222
LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1223
LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1224
LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1225
LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1226
LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1227

    
1228
/* special-case accessors */
1229

    
1230
/*
1231
 * the v1 otstamp field lives in what's now dlfs_inopf
1232
 */
1233
#define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1234
#define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1235

    
1236
/*
1237
 * lfs_sboffs is an array
1238
 */
1239
static __unused inline int32_t
1240
lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1241
{
1242
#ifdef KASSERT /* ugh */
1243
        KASSERT(n < LFS_MAXNUMSB);
1244
#endif
1245
        if (fs->lfs_is64) {
1246
                return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1247
        } else {
1248
                return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1249
        }
1250
}
1251
static __unused inline void
1252
lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1253
{
1254
#ifdef KASSERT /* ugh */
1255
        KASSERT(n < LFS_MAXNUMSB);
1256
#endif
1257
        if (fs->lfs_is64) {
1258
                fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1259
        } else {
1260
                fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1261
        }
1262
}
1263

    
1264
/*
1265
 * lfs_fsmnt is a string
1266
 */
1267
static __unused inline const char *
1268
lfs_sb_getfsmnt(STRUCT_LFS *fs)
1269
{
1270
        if (fs->lfs_is64) {
1271
                return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1272
        } else {
1273
                return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1274
        }
1275
}
1276

    
1277
static __unused inline void
1278
lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1279
{
1280
        if (fs->lfs_is64) {
1281
                (void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1282
                        sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1283
        } else {
1284
                (void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1285
                        sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1286
        }
1287
}
1288

    
1289
/* Highest addressable fsb */
1290
#define LFS_MAX_DADDR(fs) \
1291
        ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1292

    
1293
/* LFS_NINDIR is the number of indirects in a file system block. */
1294
#define        LFS_NINDIR(fs)        (lfs_sb_getnindir(fs))
1295

    
1296
/* LFS_INOPB is the number of inodes in a secondary storage block. */
1297
#define        LFS_INOPB(fs)        (lfs_sb_getinopb(fs))
1298
/* LFS_INOPF is the number of inodes in a fragment. */
1299
#define LFS_INOPF(fs)        (lfs_sb_getinopf(fs))
1300

    
1301
#define        lfs_blkoff(fs, loc)        ((int)((loc) & lfs_sb_getbmask(fs)))
1302
#define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
1303
    ((int)((loc) & lfs_sb_getffmask(fs)))
1304

    
1305
/* XXX: lowercase these as they're no longer macros */
1306
/* Frags to diskblocks */
1307
static __unused inline uint64_t
1308
LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1309
{
1310
#if defined(_KERNEL)
1311
        return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1312
#else
1313
        return b << lfs_sb_getfsbtodb(fs);
1314
#endif
1315
}
1316
/* Diskblocks to frags */
1317
static __unused inline uint64_t
1318
LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1319
{
1320
#if defined(_KERNEL)
1321
        return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1322
#else
1323
        return b >> lfs_sb_getfsbtodb(fs);
1324
#endif
1325
}
1326

    
1327
#define        lfs_lblkno(fs, loc)        ((loc) >> lfs_sb_getbshift(fs))
1328
#define        lfs_lblktosize(fs, blk)        ((blk) << lfs_sb_getbshift(fs))
1329

    
1330
/* Frags to bytes */
1331
static __unused inline uint64_t
1332
lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1333
{
1334
        return b << lfs_sb_getffshift(fs);
1335
}
1336
/* Bytes to frags */
1337
static __unused inline uint64_t
1338
lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1339
{
1340
        return b >> lfs_sb_getffshift(fs);
1341
}
1342

    
1343
#define lfs_numfrags(fs, loc)        /* calculates (loc / fs->lfs_fsize) */        \
1344
        ((loc) >> lfs_sb_getffshift(fs))
1345
#define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1346
        ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1347
#define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1348
        ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1349
#define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1350
        ((frags) >> lfs_sb_getfbshift(fs))
1351
#define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1352
        ((blks) << lfs_sb_getfbshift(fs))
1353
#define lfs_fragnum(fs, fsb)        /* calculates (fsb % fs->lfs_frag) */        \
1354
        ((fsb) & ((fs)->lfs_frag - 1))
1355
#define lfs_blknum(fs, fsb)        /* calculates rounddown(fsb, fs->lfs_frag) */ \
1356
        ((fsb) &~ ((fs)->lfs_frag - 1))
1357
#define lfs_dblksize(fs, dp, lbn) \
1358
        (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1359
            ? lfs_sb_getbsize(fs) \
1360
            : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1361

    
1362
#define        lfs_segsize(fs)        (lfs_sb_getversion(fs) == 1 ?                             \
1363
                           lfs_lblktosize((fs), lfs_sb_getssize(fs)) :        \
1364
                           lfs_sb_getssize(fs))
1365
/* XXX segtod produces a result in frags despite the 'd' */
1366
#define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1367
#define        lfs_dtosn(fs, daddr)        /* block address to segment number */        \
1368
        ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1369
#define lfs_sntod(fs, sn)        /* segment number to disk address */        \
1370
        ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1371

    
1372
/* XXX, blah. make this appear only if struct inode is defined */
1373
#ifdef _UFS_LFS_LFS_INODE_H_
1374
static __unused inline uint32_t
1375
lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1376
{
1377
        if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1378
                return lfs_sb_getbsize(fs);
1379
        } else {
1380
                return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1381
        }
1382
}
1383
#endif
1384

    
1385
/*
1386
 * union lfs_blocks
1387
 */
1388

    
1389
static __unused inline void
1390
lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1391
{
1392
        if (fs->lfs_is64) {
1393
                bp->b64 = p;
1394
        } else {
1395
                bp->b32 = p;
1396
        }
1397
}
1398

    
1399
static __unused inline void
1400
lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1401
{
1402
        void *firstblock;
1403

    
1404
        firstblock = (char *)fip + FINFOSIZE(fs);
1405
        if (fs->lfs_is64) {
1406
                bp->b64 = (int64_t *)firstblock;
1407
        }  else {
1408
                bp->b32 = (int32_t *)firstblock;
1409
        }
1410
}
1411

    
1412
static __unused inline daddr_t
1413
lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1414
{
1415
        if (fs->lfs_is64) {
1416
                return bp->b64[index];
1417
        } else {
1418
                return bp->b32[index];
1419
        }
1420
}
1421

    
1422
static __unused inline void
1423
lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1424
{
1425
        if (fs->lfs_is64) {
1426
                bp->b64[index] = val;
1427
        } else {
1428
                bp->b32[index] = val;
1429
        }
1430
}
1431

    
1432
static __unused inline void
1433
lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1434
{
1435
        if (fs->lfs_is64) {
1436
                bp->b64++;
1437
        } else {
1438
                bp->b32++;
1439
        }
1440
}
1441

    
1442
static __unused inline int
1443
lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1444
{
1445
        if (fs->lfs_is64) {
1446
                return bp1->b64 == bp2->b64;
1447
        } else {
1448
                return bp1->b32 == bp2->b32;
1449
        }
1450
}
1451

    
1452
static __unused inline int
1453
lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1454
{
1455
        /* (remember that the pointers are typed) */
1456
        if (fs->lfs_is64) {
1457
                return bp1->b64 - bp2->b64;
1458
        } else {
1459
                return bp1->b32 - bp2->b32;
1460
        }
1461
}
1462

    
1463
/*
1464
 * struct segment
1465
 */
1466

    
1467

    
1468
/*
1469
 * Macros for determining free space on the disk, with the variable metadata
1470
 * of segment summaries and inode blocks taken into account.
1471
 */
1472
/*
1473
 * Estimate number of clean blocks not available for writing because
1474
 * they will contain metadata or overhead.  This is calculated as
1475
 *
1476
 *                E = ((C * M / D) * D + (0) * (T - D)) / T
1477
 * or more simply
1478
 *                E = (C * M) / T
1479
 *
1480
 * where
1481
 * C is the clean space,
1482
 * D is the dirty space,
1483
 * M is the dirty metadata, and
1484
 * T = C + D is the total space on disk.
1485
 *
1486
 * This approximates the old formula of E = C * M / D when D is close to T,
1487
 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1488
 */
1489
#define LFS_EST_CMETA(F) ((                                                \
1490
        (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) /                 \
1491
        (lfs_sb_getnseg(F))))
1492

    
1493
/* Estimate total size of the disk not including metadata */
1494
#define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1495

    
1496
/* Estimate number of blocks actually available for writing */
1497
#define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?             \
1498
                          lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1499

    
1500
/* Amount of non-meta space not available to mortal man */
1501
#define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) *                             \
1502
                                   (u_int64_t)lfs_sb_getminfree(F)) /             \
1503
                                  100)
1504

    
1505
/* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1506
#define ISSPACE(F, BB, C)                                                \
1507
        ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&                \
1508
          LFS_EST_BFREE(F) >= (BB)) ||                                        \
1509
         (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1510

    
1511
/* Can an ordinary user write BB blocks */
1512
#define IS_FREESPACE(F, BB)                                                \
1513
          (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1514

    
1515
/*
1516
 * The minimum number of blocks to create a new inode.  This is:
1517
 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1518
 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1519
 */
1520
#define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1521

    
1522

    
1523

    
1524
#endif /* _UFS_LFS_LFS_ACCESSORS_H_ */