
For
Ju

ry
Eva

lua
tio

n

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Multi-agent system for simulation and
validation of scenarios

João Pedro Correia dos Reis

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Gil Manuel Magalhães de Andrade Gonçalves (Professor)

June 18, 2012

Multi-agent system for simulation and validation of
scenarios

João Pedro Correia dos Reis

Mestrado Integrado em Engenharia Informática e Computação

June 18, 2012

Abstract

The goal of this dissertation is to study the applicability of multi-agent systems in a military
simulations context by the development of an agent-based platform for simulation and validation.
Given a certain configuration – positioning of assets – it’s important evaluate its effectiveness in
protecting a certain region or infrastructure, knowing the communication protocols and strategies
that represent the real life protection.

This work has been developed within the scope of the SAFEPORT project, currently in execu-
tion under the "Defence Against Terrorism Program of Work" (DAT-POW) of NATO, which aims
to develop a Decision Support System to aid in the definition of the best strategies for the pro-
tection of harbors or expeditionary fleets. This DSS is composed of several independent modules
with distinct functions, in which a modular communication is a requirement.

The multi-agent platform developed in this dissertation is part of this overall system and its aim
is to provide information about the proposed strategies (in terms of pre-defined key performance
indicators) based on simulation results. The result of the simulation (several simulation runs)
represents an assessment of a certain defense configuration applied in the protection of a given
infrastructure or fleet, using a set of resources and strategies.

One of the main motivations of this project is to give the user possibility to evaluate the pro-
posed maritime assets configuration and its corresponding behaviors for surveillance and protec-
tion of a certain region, without costs and life-threatening conditions. The applicability of an
agent-based approach is also a motivation for the project development, being the implementation
of multi-agent systems for simulation in military systems an area in expansion.

i

ii

Resumo

Esta dissertação tem como objetivo o desenvolvimento de uma plataforma multiagente de sim-
ulação e validação, e o estudo da aplicabilidade de sistemas baseados em agentes num contexto de
simulação. Dada uma determinada configuração - disposição de meios marítimos – é importante
saber se esta é ou não eficaz na defesa de uma determinada infraestrutura, tendo conhecimento
dos comportamentos dos meios disponíveis e respetivas formas de comunicação. Esta dissertação
enquadra-se no projeto SafePort proposto pela NATO, fazendo assim parte de um plano mais
alargado constituído por diferentes módulos independentes, com funções distintas, sendo requi-
sito uma comunição modular.

O objetivo do projeto de dissertação passa por fornecer informação relativamente aos resul-
tados da simulação, representando uma validação de uma dada configuração dos meios militares
disponíveis para a defesa de uma dada infraestrutura, bem como as suas estratégias associadas.
Para isso foram utilizados os conceitos explorados na revisão bibliográfica, simulando um ambi-
ente hostil através da informação modelada sobre os comportamentos e estratégias dos meios.

Uma das grandes motivações para a realização desta dissertação passa por dar a possibilidade
aos utilizadores de validar os meios aplicados num ambiente de vigilância e proteção, e os seus
respetivos comportamentos, sem que custos e ameaças de vida humana sejam uma possibildiade.
A utilização de sistemas de simulação e validação baseada em agentes representa também uma
motivação ao desenvolvimento deste projeto, visto ser uma área em expansão dentro da simulação
computacional, e mais especificamente na simulação militar.

No desenvolvimento do projeto, foram aplicados alguns processos no que toca à implemen-
tação de um sistema de simulação, e na modelação correta de um comportamento ou de uma
estratégia, bem como tecnologias que permitem a correcta comunicação modelar - modelo de
simulação - e modular - todos os módulos que participam no projeto na sua generalidade. Estes
processos são fruto do estudo já realizado sobre as áreas de contexto da dissertação, sendo adap-
tadas aos requisitos do sistema para a realização da mesma.

iii

iv

Acknowledgements

The writing of this dissertation has been one of the most enriching and rewarding experiences
regarding the requirement of independent learning given the project context, being undoubtedly the
most important and significant academic challenge. Without the support, patience and guidance
of the following people, this study would not have been completed, and it is to them that I owe my
deepest gratitude.

• Professor Gil Gonçalves who undertook to act as my supervisor, being the most important
guidance in both project implementation and dissertation issues;

• Researcher Paulo Dias, who undertook to act as my co-supervisor, which provided all the
necessary military knowledge for the project implementation, and exposed the whole project
in the NATO Research and Technology Agency, when it was in development;

• To all my friends that supported me and inspired in all the efforts made along this academic
journey.

João Pedro Correia dos Reis

v

vi

"We have to remember that what we observe is not nature in itself,
but nature exposed to our method of questioning."

Werner Heisenberg

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem and Goals . 2
1.4 Document Structure . 3

2 State of the Art 5
2.1 Introduction . 5
2.2 Simulation . 6

2.2.1 Military Context . 11
2.2.2 Simulation Platforms . 11
2.2.3 Agent Based . 13

2.3 Modeling . 16

3 Simulation 19
3.1 Multi-agent Simulation . 19

3.1.1 Multi-agent System . 19
3.1.2 Agent . 20
3.1.3 Environment . 21

3.2 Military Simulation . 23
3.2.1 Properties . 23

4 Problem and Motivation 25
4.1 Motivation (DAT-POW and Safeport) . 25
4.2 Goals . 26

5 Implementation 27
5.1 Platform . 27

5.1.1 JADE - Multi-agent System Framework 27
5.1.2 FIPA - Foundation for Intelligent Physical Agents 28

5.2 Conceptual Solution . 29
5.2.1 Physical Architecture . 29
5.2.2 Logical Architecture . 30
5.2.3 Modular Communication . 32
5.2.4 Class Model . 36
5.2.5 Multi-agent Architecture . 43
5.2.6 Agent Architecture . 45
5.2.7 Interface . 47

ix

CONTENTS

5.3 Functionalities . 52
5.3.1 Obstacle Avoidance . 52
5.3.2 Strategies . 54
5.3.3 Simulation . 59

6 Validation - Case Study 63
6.1 Tabletop 1 . 63

6.1.1 Configuration File . 64
6.1.2 Strategy file . 66
6.1.3 Simulation . 69
6.1.4 Results . 70

6.2 Tabletop 2 . 71
6.2.1 Configuration File . 71
6.2.2 Simulation . 74
6.2.3 Results . 74

7 Conclusion and Future Work 77
7.1 Work accomplished and conclusions . 77
7.2 Future Work . 78

7.2.1 Artificial Intelligence . 78
7.2.2 Integration with DSS . 79
7.2.3 Sensors and Environment Improvement 79
7.2.4 Strategies and Behaviors . 79

A Appendix A 81

References 87

x

List of Figures

2.1 Military Simulation Environment [MAK11] . 6
2.2 Verification, Validation and Accreditation Diagram [Sar91] 8
2.3 Simulation Development Process [CR07] . 9
2.4 Directed fire model equation . 17
2.5 Hiperbolic Function Definition . 17
2.6 Directed Fire model solved . 17

3.1 Multi-agent System . 20
3.2 Military Simulation Range [Tay83] . 23

5.1 JADE architecture [Bel07] . 28
5.2 Physical Architecture . 30
5.3 Logical Architecture . 31
5.4 Class Model . 38
5.5 Survey Behavior . 39
5.6 Multi-agent System Architecture . 44
5.7 La Spezia, Italy mapped area . 48
5.8 Ray Casting . 50
5.9 Ray Casting Implementation . 51
5.10 Simulator’s Interface . 52
5.11 Example 1: La Spezia . 54
5.12 Example 2: La Spezia . 55
5.13 Grouping communication . 56
5.14 Warning Communication . 57

6.1 Case Study 1: Initial state . 64
6.2 Case Study 1: Protected Area . 65
6.3 Case Study 1: Group Formation . 70
6.4 Case Study 1: Group Following . 70
6.5 Case Study 1: Group Authorization . 71
6.6 Case Study 2: Initial State . 72
6.7 Case Study 2: Protected Area . 72
6.8 Case Study 2: Displacement of Strike Force . 74
6.9 Case Study 2: Strike Force’s capture and protected zone’s entrance 75
6.10 Case Study 2: Terminated Simulation . 75

A.1 Dissertation’s Planning . 82

xi

LIST OF FIGURES

xii

List of Tables

6.1 Case Study 1: Results . 71
6.2 Case Study 2: Results . 75

xiii

LIST OF TABLES

xiv

Abbreviations

DSS Decision Support System
MAS Multi-Agent System
MAA Multi-Agent Architecture
KPI Key Performance Indicators
M&S Modeling and Simulation
DFA Deterministic Finite Automata
ABEL Advanced Boolean Expression Language
PLD Programmable Logic Device
RSAC Rand Strategy Assessment Center
NCL National Command Level
ACL Area Command Level
BDI Belief Desire Intention

xv

Chapter 1

Introduction2

Regarding the military context, one of the most common issues refers to the managing and

appliance of aerial, land and maritime available means, in both strike and defensive environments.4

For the problem solving of this approaches, differential equations were explored in the early of

twentieth century, by F. W. Lanchester and Epstein [Smi98]. Those equations were a major6

step for the modeling and simulation process in military warfare, being nowadays used for the

simulation of several kinds of strategies in different means in hostile situations [Ila04].8

Taking into account the past two decades, military simulation systems have been changing its

paradigm and the way they are implemented computationally. Those paradigms refers to artifi-10

cial intelligence usage, in which was a changing of simulation approach, passing from differential

equations to an individual and decentralized approach, allowing this way an adaptive behavior12

modeling [Ila04]. The usage of multi-agent architecture regarding simulation, modeling and val-

idation, has becoming to prove adequate for both individual and global strategies and behaviors.14

The study of complex dynamic systems modeling has been explored, being one of the most im-

portant contexts for the diverse agents’ implementation and heterogeneous behavior.16

This kind of problem regarding the simulation context has a major influence in the military

scope, since there are several combat means distributed around the world, with the purpose of har-18

bor surveillance and defense. The agent-based simulation study allows the validation of strategies

that every nation has about their available defense and strike means. This document has the main20

purpose to present not only the implemented project in the dissertation scope, but also a discus-

sion of the agent-based simulation regarding the military warfare, and show some work that were22

performed in the area of Distributed Artificial Intelligence.

1.1 Context24

The agent-based project arises from the necessity of real world military warfare simulation

and validation, regarding the requisites of SAFEPORT’s scope proposed by NATO. The main26

goal of this project is to validate a set of surveillance defense force strategies in a given mapped

region, using the implementation of sensors, behaviors and communication process in a simulation28

1

Introduction

platform. The simulation only takes into account the maritime forces, despising the aerial and land

means for harbor protection. 2

This project is framed in Multi-Agent System (MAS) scope, and has the main purpose of

developing and agent-based architecture that fulfills the proposed simulation problem. Regarding 4

this project context, the notion of agent is defined as a single real vehicle, with collective and/or

individual communicative and interaction properties for the problem solving fulfillment. All the 6

objects are intended to perceive information from its associated simulated environment, being an

inherent property of the developed architecture [Woo95], providing a real world representation 8

[Woo02].

The simulation property as temporal component should be implemented regarding the mod- 10

eling of multi-agent system like strategies and behavior definition, being modeling a sub-domain

of simulation. This project should also replicate the time conditions using the usual time step ap- 12

proach, creating a continuous simulation instead of discrete, like is using in, e.g. state machines.

1.2 Motivation 14

Defense system represents a problem to be solved, firstly in personal context, then between

groups and social entities, and finally between nations and countries, which entails in the validation 16

of defense and surveillance strategies for the entities protection.

This project has a main motivation of developing a capable system which allows to increase 18

the safety of valuable entities, regarding the absence of viable and easy real simulation process.

Hence, the increasing simulation defense components and frameworks positively influence both 20

sociologic and political levels, allowing a social stability in which investments and production are

all in favor of population. One of the simulation purposes is to avoid costs and life-threatening 22

situations that occur in real world training exercises, being a safe tool for simple decision-making

processes. Nowadays the models used in simulation platforms cannot replicate with hundred per 24

cent confidence the real world dynamics, being also commonly used for discarding situations that

are not viable, but are expensive and dangerous in real world applications. 26

The usage of agent-based systems is also a major motivation for the platform development,

since the military approach is yet closely attached to the differential equations for the modeling 28

of non-linear complex systems. The usage of agents that represents independent and individual

entities in the real world environment allows the creation of simple and different models for all the 30

agents that constitutes the multi-agent architecture, along with ontologies and a protocol commu-

nication, resulting in a heterogeneous and complex system. 32

1.3 Problem and Goals

This simulation platform is framed in a higher project called SAFEPORT proposed by NATO, 34

and is composed by different modules that should be integrated with. The platform should sim-

ulate the modeled dynamics taking into account the simulation characteristics, region mapping 36

2

Introduction

and vehicle properties, provided by a configuration file from the DSS. The simulator should pro-

vide some feedback from the simulation execution, in which parameters like unseen threats in2

protected areas should be analyzed. Hence, the platform has to promote a bi-directional modular

communication for the proper execution of the project as a whole, receiving the configuration and4

characteristics to simulate and provide report of simulation execution.

The main goal of the project is to replicate the real world dynamics regarding the military war-6

fare, by using a multi-agent system. The simulation platform was only requested due to paradigm

changing, which is intended to be a new type of simulation process in the military context, despis-8

ing all the previous used methods. The final result should provide a viable and effective validation

of the simulation execution, being capable of advising the user for the decision-making of defense10

configuration choice.

1.4 Document Structure12

The structure of this document is based on different sections that are intended to organize

the information, promoting an easy understanding of the dissertations purposes, and fast access to14

specific information which users want to be explained.

The first contents regards Section 2 and refers to the state of the art, in which will be presented16

some platforms used in the military modeling and simulation, giving an overview for the user’s

context in the scope of the dissertation. Section 3 is intended to provide a context of multi-18

agent system and agent’s properties, and what is valuable to replicate for the real world warfare

simulation. Section 5 talks about the implementation of the project, explaining all the details like20

simulation process and obstacle avoidance algorithms. Section 6 presents two case studies that are

intended to validate the simulation’s implementation, using real world cases to compare the final22

provided results. Section 7 is the final exposure of the dissertation, and promotes a discussion of

all the methodologies used for the project implementation, the technologies used and the results24

for validation purposes.

3

Introduction

4

Chapter 2

State of the Art2

The scope of this chapter is to present some simulation and modeling works, providing a state of

the art in the military context allowing users to understand how platform development is growing4

and the most important produced simulation software.

In this section will be also presented the most common problems that leads to the usage and6

development of this kind of platforms, as well as the necessary information for the military con-

ception of simulation.8

2.1 Introduction

In this section will be presented few modeling and simulation platforms within the military10

scope, making an analysis of how this kind of platform can advise in the decision-making process

of the best force configuration, complemented with behavior models of individual and collective12

entities. Also in this section will be analyzed some platforms which use agent-based architectures

and class model that well represents the modeling and simulation process. One of the main goals14

is to create a comparison between the different analyzed architectures to be measured the pros and

cons, for the further justification of framework’s usage. The platforms to be analyzed were chosen16

taking into account its importance in the field, its implementation and usage. The platforms go

from early eighties to nowadays, creating this way a comparative term for the simulation platform’s18

evolution. Regarding the Modeling and Simulation concept (M&S), a definition was conceived by

the United States Department of Defense [oD98], which says:20

"The use of models, including emulators, prototypes, simulators, and stimulators, either statically

or over time, to develop data as a basis for making managerial or technical decisions."22

The next sections refer to the independent treatment of Modeling and Simulation, for the

specific explanation and good readers’ understanding of concepts.24

5

State of the Art

Figure 2.1: Military Simulation Environment [MAK11]

2.2 Simulation

Regarding the definition of simulation, a reliable source of how the terms should be used refers 2

to the United States Department of Defense [oD98]:

"A method for implementing a model over time." 4

Other interesting definition is the appliance of the simulation process:

"The executing software on a host computer that models all or part of the representation of one 6

or more simulation entities. The simulation application represents or "simulates" real-world

phenomena for the purpose of training, analysis, or experimentation." 8

In other words, the simulation is the attempt of real world replication allowing the possibil-

ity of behavior analysis, which entails in problem solving and aid in decision-making process for 10

better behavior’s applicability in the real world. For a good understanding about the simulation

concept, there is other concept that cannot be putted aside and needs to be explained – Compu- 12

tational Modeling. The computational simulation concept involves the computational modeling

due to the fact of modeled behaviors to execute, usually mathematical modeling for the creation 14

of real world environment, needs a simulation process that can guarantee the well execution of the

model, being also possible the usage of the simulation process in further modeling cases. From the 16

simulation process could emerge valuable behaviors that should be used for the problem solving

improvement. An example of this approach is the Genetic Algorithms that use solutions of the 18

problem for the generation of new ones, which entails in the further inclusion of new solution’s

generation. Figure 2.1 is intended to show a more realist goal of the simulation process, in which 20

can be seen the simulation of a military system within a warfare environment.

As previously said, the main purpose of simulation implementation is related to the gathering 22

of answers to a certain problem, using the real world replication. This replication should take

6

State of the Art

into account all the environment dynamics like properties and behaviors, in which could be imple-

mented in a computational system, avoiding the life-threatening and major costs of real simulation2

and training process.

Simulation is in an increasing importance process, due to the high level of abstraction and4

flexibility of the implementation diversity. Physics, economics, psychology, business logistics,

military operations and sports are few examples of possible integration of simulation process for6

problem solving. All the real world environments which have a temporal component with a high

degree of interaction could be implemented to reach validation or problem solving purposes, using8

simulation processes.

Few real examples of simulation goals are related to optimization problems, environment con-10

trol tests, group and individual training and decision support systems. One proper application of

this type of system, is the simulation of complex systems which are impossible to solve analyti-12

cally due to a high number of degrees of freedom inherent to environment dynamics.

The execution of simulation environments which are computationally modeled could have14

different temporal complexities, going from few seconds – simple environment to model without

the existence of a high number variables and degrees of freedom – to several hours – non-linear16

dynamic systems – using a web of computers, making usage of distributed processing.

As an example of real world replication, two projects that marked the simulation and modeling18

positively should be presented. The first one refers to the modeling of a complex protein producer

in organisms using 2.64 millions of atoms [oPH05], and the second regards the modeling of20

66.239 war tanks and vehicles, where the simulation environment was very similar to Kuwait,

using multiple super computers of United States Department of Defense, in the scope of High22

Performance Computer Modernization Program [JPL97].

Like in all models created by humans, there’s always an attempt of real world similarity, in24

which few of them were good, and others not. This similarity attempt emerges from the concern of

both modeling entities and final users of the platforms. Hence, one of the most common problems26

of this context is to know if the final result of the modeling process is adequate, or if it fulfills

the goals whereby it was created. For this problem solving, some authors like Sargent and Smith28

presented three essential phases: Verification, Validation and Accreditation [Sar91].

Robert G. Sargent presented in 1982 a simplified model of verification and validation that30

refers to the development process of models, in which authors like Banks, Gerstein and Searles,

claims that this simplified model is more adequate regarding previous approaches.32

All the presented phases are an integral part of the development simulation cycle and assumes

firstly the world replication as a computational system, and then the conceptual model could be34

defined [CR07].

Figure 2.2 was build taking into account the Sargent’s diagram and could be seen in this sim-36

plified model, that are three different important sections. One of them is Problem Entity which is

the system to be modeled; the other is the Mathematical Model that refers to conceptual model38

construction; and finally the Computerized Model which is the mathematical model implementa-

tion as a platform.40

7

State of the Art

Figure 2.2: Verification, Validation and Accreditation Diagram [Sar91]

The conceptual model is built through the modeling and analysis phase; the computerized

model from implementation of the computer program phase; and system is composed by the ex- 2

perimentation and operational validation phase.

Validation of conceptual model, or just Validation, is the process to determine if the gathered 4

information and assumptions of the model are correct, and the system implementation provides the

final expected results. This phase is commonly described as the answer to the following question: 6

Are we building the right product?

Verification of the computerized model, or just Verification, is intended to ensure the correct 8

computerized implementation of the conceptual model. This phase is usually described as the

answer to the following question: Are we building the product right?. 10

Accreditation or Operational Validation consists of verifying if the final resultant behavior of

the model is enough precise to its final purposes. The central section of Figure 2.2 – Data Validity 12

– is responsible to ensure that all the necessary data for developing, evaluation and model testing,

and experimentation phase are adequate and correct. 14

Simulation Process
16

From the first attempts of simulation to nowadays, the modeling and simulation techniques

have been evolving in a way of creation a right and efficient process, which could validate the 18

necessary parameters for the proper construction of simulation and model. This process goes from

8

State of the Art

the problem definition, software model construction, to its possible expansion for a better world

representation. Figure 2.3 presents an adapted development process created by Smith in 1998,2

for the efficient and effective simulation’s implementation, taking into account the validation and

verification of the model.4

Figure 2.3: Simulation Development Process [CR07]

The first stage of this process regards the Problem Definition. This stage is intended to define

the goals and requisites that should be taken into account for the system’s development, and the6

accuracy inherent of the expected final results. The following stage if the Conceptual Model

Definition, which consists in the algorithms usage for a possible modeling and its input and output8

variables. This stage should be repeated as necessary, in order to the proper model could be

found. The next stage is constituted by the Collect Input Data that fits for parameters modeling10

purposes. This information should be also used for the validation of final results in which the

proper correct behavior of the system can be tested with the means used to develop it. The actual12

stage represents the more complicated one, since it is related to human subjectivity for the notion

of proper replication of the real world. Build Software Model is the next stage of the process, and14

it’s based on the computational implementation, using a programming or specification language,

of mathematical modeling and previous developed functions. However, according to Verification16

& Validation, all the previous stages could be repeated, refining the model. The following stage

it the Experimental Design which consists in the system design that can benefit the final result in18

terms of efficiency, reducing the time of simulation. Simulation Execution is the next stage of the

process, and is intended to execute several simulations for the high number of results gathering.20

In the posterior stage, Generate Output Data, the Monte Carlo method is commonly used, in

which different data could be collected, and this way the Analyze Data stage can be performed,22

9

State of the Art

being possible to infer with more efficiency the entities’ simulated behaviors and trends, that can

answer the all the questions of the problem. The usage of tools that could well represent all this 2

generated information is an asset for a quick answer attainment to the problem, as well as an easy

explanation to other not specialized entities. The stage that succeeds all the aforementioned, is the 4

Document Results, in which all the process information is documented and registered for further

analysis and sending to interested parties. The final stage of the process is Expand Model, and is 6

intended to expand the simulation model to other kind of simulation processes. By the simulation

process development presented previously, different kinds of simulation could be implemented, 8

being continuous, discrete or even stochastic.

Continuous Simulation 10

Those kind of simulations are mostly likely used when exists the necessity of continuous vari- 12

able modeling, representing an evolution and progression through time, regarding a certain en-

vironment. State variable that are associated to temporal processes are usually represented with 14

differential equations, which are intended to reproduce the state of the environment along time.

Continuous simulation is commonly used in contexts like economics, engineering, physics, biol- 16

ogy, inter alia, due to the usage of differential equations for the model construction to be used in

simulation. The first times that a computer was used for the continuous simulation performance 18

dates back to 1946, and in that time the necessity of solving diverse world problem was a real con-

cern, and the computer promoted its functions for the celestial mechanics, biologic systems and 20

fluid mechanics. One of the most well-known cases refers to the predator-prey model presented

by Lotka. This model consists in the interaction between two populations with the main goal of 22

surviving, in which one of them is considered passive (prey), and only has the capability to eat,

grow and reproduce, and the other (predator) depends on its preys to feed [Lot20] and [Vol26]. 24

Discrete Simulation
26

Discrete simulation can be seen as a set of sequenced operations, which represent the actual

state of a dynamic system. The composition of the actual state is made through merging all the 28

states of the system entities, and it is changed when events occur that leads to the system update.

Those changes are made instantaneously, and contrary to the continuous simulation, a transitory 30

phase doesn’t exist that can influence the environment, and the other agents indirectly. An ex-

ample that could be presented is the NDFA (Nondeterministic Finite Automata), which does not 32

allow a continuous time line, but a discrete representation of the dynamic system, skipping from

state to state. This kind of simulation uses concepts like queues, implementing most of the time 34

data structures like FIFO (First In First Out) and LIFO (Last In Last Out) for the organization of

simulation state and preserve the good execution of the process [CR07]. 36

10

State of the Art

Stochastic Simulation
2

The stochastic simulation is mostly used when exists a variation of certain parameter values

that influences the state of dynamic systems along time [CR07]. This model is deterministic,4

changing the used simulation process, passing to be performed through statistic distributions, like

Normal, Poison or Negative Exponential Distribution. To the model constitution, information6

about the variables’ behavior is needed to calculate the proper model for simulation usage. This

information is used to replicate a more reliable approach of the real world dynamics, promoting a8

good simulation execution and more adequate results.

2.2.1 Military Context10

For modeling cases of military environments, Andrew Ilachinski claims that the hostile environ-

ment in which military means are subjected could be modeled as an adaptive complex system. The12

hostile environment between entities could be mathematically and physically modeled, through a

non-linear dynamic system composed by the interaction of hierarchical organized agents which14

continuously adapt to the environment [Ila04].

Regarding the modeling environments like nonlinear dynamic systems, there are different16

kinds of environments, with distinct characteristics. One of those environments is intended to

locally control its operations, in which the entity group is disorganized and has not the adaptive18

skills. Other situation refers to warfare environments that hardly can reach communication equi-

librium, and act directly through the environment. Finally, can exit an environment in which its20

agents have an high adaptive property, knowing that sometimes a regulator agent couldn’t exist to

coordinate and organize its behavior, leading to a survival environment.22

For an easy understanding in military operations, Red Team and Blue Team are the names of

strike and defense teams, correspondently, in which an hostile environment should be modeled.24

2.2.2 Simulation Platforms

Despising the platform’s explanation in 2.2.3, this section is intended to discuss the platforms26

that are not agent-based giving an much wider overview about the military simulation platforms to

users. Will be presented the simulation and validation process of none agent-based platforms, in28

which the user most provide the strategy to the software of its environment applications. Section

2.2.3 will be focusing the explanation of platforms which provides means to the behavior modeling30

through adaptive functions and implementations.

Rand Strategy Assessment Center32

The RSAC software system was developed to improve the strategy analysis, combining the best34

properties of WAR Gaming, and analytic modeling, using a multi-agent architecture based in rules

that describes its behaviors [Hal85]. Those rules are defined by people with military knowledge,36

11

State of the Art

in a most alike English language called ABEL, which can offer a human independence allowing

the automatic simulation of agent behavior. The war gaming concept is itself a discipline with a 2

certain degree of realism, but doesn’t allow the multi-scenarios’ analysis, meaning that is not pos-

sible to analyze the simulation entities’ behavior, inferring this way if a certain strategy is effective 4

or not.

The platform is constituted by four different types of agents, which are intended to simulate 6

the Red Team, the Blue Team, the environment of the simulation process (Scenario Agent) and

the coordinator agent (Force Agent). The behavior of the first three agents is written in ABEL, 8

and the fourth is written in C programming language. The first two agents, Red and Blue team,

aims in simulating the behavior of two conflict forces, while the scenario agent has the objective 10

of simulate the effects of environment dynamics. The coordinator agent is intended to combine

and organize the effects of those three previously explained agents. 12

The implementation of both Red and Blue teams have a structure divided into three distinct

levels – National Command Level (NCL), Area Command Level (ACL) and Tactical Command 14

Level/ForceAgent (TCL) – representing an hierarchical decision-making. NCL receives influence

and the actual environment state to determine: 16

• Context of the decision-making to be performed of each team;

• The operational goals that each agent should reach; 18

• Operational strategy that each agent should implement for the goals fulfillment.

Determining the above parameters, the NCL has the capability of chose the Analytic War Plan 20

(AWP), constituted by a set of rules with the main goal of continuing the warfare simulation. This

platform has previously calculated all the possible plans that could be implemented during the 22

conflict phase.

After that, the previously calculated plan is sent to ACL with the intent of being implemented, 24

sending information for the scenario and force agents. Finally, the TCL, which is merged with the

coordinator agent, aims in to simulate the execution along time. 26

One peculiar characteristic of this platform is instead of the a direct communication between

agents, the state of each entity of the simulation is changed and updated through the World Sit- 28

uation Dataset (WSDS). For the indirect managing of contents, a dictionary is used allowing to

know which information should be given to an agent, when it is requested. 30

Network Centric Forces
32

This platforms consists in simulate the conflict and communication processes in warfare en-

vironments, and represents one of the major projects developed nowadays regarding in one hand 34

the easy way of simulation parameterization, and for another the realistic representation of the

simulation process. This platform is constituted by other two platforms, one of them is named 36

VR—FORCES, developed by VT MAK, and the name of the other is QualNet, developed by

12

State of the Art

Scalable Network Technologies. Both of platforms have different purposes, constituting essential

parts of communication, simulation and interaction with users.2

VR-FORCES platform has the major goal to simulate aerial, land and sea entities’ behavior,

using different types of means, in which users can previously model the behavior and strategy the4

vehicles and forces should implement in certain situations and contexts. This way, the platform

has an three dimensional graphical interface where conflicts should be simulated and presented for6

the user to follow the evolution of its strategy’s implementation.

The QualNet platform is a realistic communication simulation between the agents and enti-8

ties that constitutes the simulation’s configuration. In a hostile situation, some limitations could

exist, like physic limitations, which can reduce of the removal of direct communication between10

entities. Those limitations could be provoked by land characteristics, like urban environment, or

by the range of communications, like establishing a message exchange with a satellite. The com-12

munication simulation goes from the human interaction, like to soldiers talking to each other, to

communication between antennas placed in different buildings in a city.14

2.2.3 Agent Based

This subsection is intended to show few agent-based simulation platforms, with both goal of16

complement a modeling case of agent behavior, and agent simulation with no generation of new

behavior through agents’ adaption.18

ISAAC
20

The name ISAAC comes from Irreducible Semi-autonomous Adaptive Combat and is an agent-

based platform for the simulation of a reduced number of combat forces. For the specific context of22

this platform, a multi-agent simulation is artificial life community capable of develop an adaptive

complex system [Ila04]. This system allowed to demonstrate that the usage of agents embed-24

ded in a military simulation is possible and viable. This concept was presented in 1997 and is

agent-based, in which follow simple rules of behavior that could be associated to a real world26

situation with military properties. The development environment of this platform was MicroSoft

Disk Operating System (MS-DOS), using C programming language.28

ISAAC – Agent Architecture
30

As previously said, the agent concept is the base of this platform development, and this way

each of them has some properties that define it as an independent entity, and behaves to in order32

to reach its goals. Each agent represents a unit of warfare, in which could be a single soldier, a

transportation vehicle, an armored vehicle, etc. to guarantee the agent’s operability were defined34

the following characateristics [Ila04]:

• Doctrine: a default local-rule set specifying how to act in a generic environment36

13

State of the Art

• Mission: goals directing behavior

• Situational Awareness: sensors generating an internal map of environment 2

• Adaptability: an internal mechanism to alter behavior and/or rules.

All agents with those characteristics comply with a hierarchy that is vertically defined. This 4

verticality is due to the fact of a commandant existence which could locally influence the agents,

to a group or individual, or globally to all the agents in the environment. These agents have the 6

main goal to simulate directives of military situation, in which high senior posts have different

goals and behavior from its decendents. 8

EINSTein
10

The name EINSTein derived from Enhanced ISAAC Neural Simulation Toolkit, and is an agent-

based simulation platform like ISAAC. This system uses the concept of agent to allow the au- 12

tonomous individual and group behavior development, for further integration with the simulation

environment. This platform uses the same philosophy of ISAAC platform, which an agent is an 14

individual representation of people, vehicles, or generally, entities discarding the notion of agent

like weapons, tying to replicate a machine’s behavior. 16

The EINSTein platform can be considered as the first attempts to simulate the warfare with

agent-based architecture, from small to medium scale [Ila04]. Being the agent’s implementation 18

a simple and rudimentary intelligence approach, they are prepared to react to several situations

with a large mechanized ways, which can depend from the warfare environment dynamics. The 20

existence of dynamic and adaptive rules allows the agent to respond rapidly to unexpected situa-

tions providing the best response, knowing which behavior should be applying in certain circum- 22

stances. The platform was conceived from object oriented architecture, creating a basic represen-

tation based on objects. This type of programming is mostly associated with a class model that 24

represents the relations and interactions of objects. Class model allows the specification of an ad-

equate architecture for the agent-based implementation being associated to concepts like heritage, 26

polymorphism and encapsulation. Despising the implementation of the agent-based architecture,

this platform is divided into three independent modules: 28

• Combat Engine;

• GUI; 30

• Data Collection;

This type of approach allows those three components being compiled independently, without 32

the necessity of the whole platform’s compilation that does not represent any considerable change.

Like this platform is divided into three independent modules, a file based communication was 34

14

State of the Art

adopted for the modular information exchange. The communication is based on information re-

quest to promote the actions and some complementary information due to the well function of the2

system. A basic example is GUI information request to the Combat Engine to update the users

information, maintaining this way the normal workflow of the simulation process as whole taking4

into account all the modules.

EINSTein - Behaviors6

Other strong component of this platform is the set of behaviors based in military actions that8

can fully replicate the real world warfare, promoting greatly the simulation’s final result. A subset

of behaviors could be represented as following:10

• Forward advance;

• Frontal attack;12

• Local clustering;

• Penetration;14

• Feints;

• Retreat;16

• Attack posturing;

• Containment;18

• Flanking maneuvers;

• "Guerrilla-like" assaults.20

One of the platform’s goals is to generate and obtain new set of behaviors and its subsequence

evaluation in terms of macro-behavior – general behavior of teams – and micro-behaviors – in-22

dividual behavior within a team. These behaviors patterns are used as new strategies to move

and act in hostile environments, going from the operation coordination to the individual survival24

behavior. This platform can be seen as a higher purpose in which it was created. If the main con-

cept of this system could be abstracted and be applied in any simulation environment, the changes26

in micro-behaviors could be explored by knowing the impact in macro-behaviors. This type of

approach contributes to the chaos theory understanding, being useful for complex system devel-28

opment through slight changes in agents’ behaviors, promoting the problem solving effectiveness.

15

State of the Art

2.3 Modeling

One of the most well-known Modeling definition was made by United States Department of 2

Defense:

"Application of a standard, rigorous, structured methodology to create and validate a physical, 4

mathematical, or otherwise logical representation of a system, entity, phenomenon, or process."

In other words, modeling could be seen as the implementation of several models, being model 6

a real world reproduction in a computational application. The using of model in simulation pro-

cesses is a necessity due to its behavior execution in a certain environment, also modeled, where 8

different behaviors should interact resulting in a similar real world replication. In the following

section will be discuss some important notions of modeling understanding, regarding its usage and 10

construction, by presenting examples of military modeling and authors’ theories using computa-

tional modeling, despite mathematical approaches. 12

Lanchester’s Law
14

For a good understanding of military simulation in terms of mathematical approaches, regarding

the last century, a travel to 1914 should be made to know the presented work of F. W. Lanchester. 16

This author’s legacy starts the military modeling and simulation history in warfare situations, be-

ing yet nowadays used. Despite only few mathematical work be presented in this section, authors 18

like Lottka-Voltera, Chase and Osipov should be noticed and taken as a reference in this document,

being the precursors of combat theories and predator-prey model. 20

Lanchester’s Law - Equations
22

One of the most simple cases the Lanchester presented as to do with the directed fire or Square

Law [Lan56]. The author claims the attriction of on force (Red or Blue team) is proportional 24

to the number of elements of the opponent force. Assuming R(t) and B(t) are a quantitative rep-

resentation of Red and Blue teams’ strength, in a given period of time t, and αR and αB are a 26

representation of constant effective fire rates at which one unit of strength on one side causes at-

trition of the other side’s forces. Hence, Lanchester built and directed fire model and can be seen 28

in Figure 2.4.

Now will be presented an approximated way of solve differential equations, using hyperbolic 30

functions. The hyperbolic functions are defined as Figure 2.5.

The model presented in Figure 2.4 is resolved with equation presented in 2.6. 32

Like the Ilachinski claims, despite of the simplicity of presented equation, is hard to find

enough direct and truth relation that validates the real world dynamics. The inconsistent data 34

could be a detrimental factor to the approximation of this model to a real warfare situation, due to

much of the information regards only of the teams, not having the proper information about both. 36

16

State of the Art

Figure 2.4: Directed fire model equation

Figure 2.5: Hiperbolic Function Definition

Figure 2.6: Directed Fire model solved

Other case is the uncertainty of how information is documented not having the proper formality,

reaching data like killed, killed + wounded, killed + missing, etc [Ila04].2

Lanchester’s Law - Limitations
4

As previously said, this mathematical model cannot describe a sufficient approximation of re-

ality. One of the strong limitations is the outdated information of new war strategies and used6

technology in twentieth century, which means well trained autonomous teams, with new armor

that can be inserted in a cooperative environment, which was not contemplated in Lanchester’s8

Law [Ila04].

17

State of the Art

18

Chapter 3

Simulation2

3.1 Multi-agent Simulation4

3.1.1 Multi-agent System

Multi-agent systems can be defined as a set of agents that interact in a common environment,6

having the ability of changing themselves and the environment [Fer96]. A multi-agent system

can be seen as a society, which a set of coexisting independent entities, reaching its goals, using8

its cooperation and communication skills, like interaction, perception, adaptation and mobility.

This type of system has the capability of solving its own problems by interacting to achieve its10

objectives [Oli99]. Another definition of multi-agent system involves a flexible web of responsi-

ble entities aiming the problem resolution, working as a group to obtain a collective answer which12

is beyond the individual knowledge of each entity [DC89]. Figure 1 represents some important

characteristics like an interactive environment where entities are inserted in, indirect communica-14

tion through each visibility and influence circle, and direct communication by the organizational

relationship and interaction links. These communications are a good representation of real world16

where entities are neither omnipresent, neither omniscient.

For the correct implementation of a Multi-agent System, the following six topics should be18

taken into account [Fer95]:

• An environment that is usually a space;20

• A set of objects that at a given moment could be possible to associate any object with a

position;22

• An assembly of agents, which are specific objects and represent the active entities in the

system;24

• An assembly of relations that link objects to one another;

19

Simulation

Figure 3.1: Multi-agent System

• An assembly of operations making it possible for the agents to perceive, produce, transform,

and manipulate; and 2

• Operators with the task of representing the application of these operations and the reaction

to the world. 4

Those characteristics allow the correct classification and segmentation of agent-based system,

in which its construction should be formalized to direct the problem resolution through the archi- 6

tecture conception phase. For the development of a multi-agent system there are some pertinent

questions, regarding its context areas, that should be raised to promote a correct coexistence be- 8

tween objects that constitutes the environment [Bou04]:

• Decision-making: Which decision-making mechanisms are available to agents? Who agent 10

perception, representation and act is modeled?

• Control: Are there some hierarchical between agents? 12

• Communication: Synchronous acting of agents? Which type of agent messages should be

considered? There is a specific syntax? 14

It is known that the architecture and agents must be specific for each presented problem; hence

these topics constitute the cornerstones of MAS that should provide an approximation of real world 16

dynamics, and have to be implemented and modeled in order to reach a valid solution.

3.1.2 Agent 18

The definition of agent varies in ranges of context, assuming different functions and purposes in

areas like philosophy, sociology, economy, law, and others. Despite those contexts, the definition 20

20

Simulation

is related to Artificial Intelligence: An autonomous agent is a system situated within and a part of

an environment that senses the environment and acts on it, over time, in pursuit of its own agenda2

and so as to affect what it senses in the future [Fra97]. Other definition is: A computer system

that is situated in some environment and that is capable of autonomous action in this environment4

in order to meet its design objective [Woo02]. Agents as software implementation follow certain

properties that define and allow the fulfillment of its purposes. There is a set of characteristics that6

models an agent which is inserted in an environment that allows an approximation of real world

properties [Woo95]. The characteristics that model a simple agent, also known as weak notion,8

are:

• Autonomy: The agent operates without the direct intervention of humans or others;10

• Social ability: Interaction with other agents;

• Reactivity: Perception and reaction of environment changes;12

• Pro-activeness: Taking self-initiative; and

• Temporal continuity: The agent is continuously running processes.14

More complex characteristics that an agent should have to resemble with humans are defined

by the following:16

• Rationality: Act in order to achieve its own goals;

• Adaptivity: Adjust itself to the habits, working methods and preferences;18

• Benevolence: An agent will always try to do what it is asked for;

• Collaboration: An agent should not unthinkingly accept certain orders that could put in20

danger the environment or damage other agents; and

• Mobility: The ability to move around the environment.22

For the environment to implement the minimum complexity, an agent couldn’t have the whole

perception of it, being this way omnipresent, and have control of the environment if it has the24

capability to change and influence it, provided by the interaction properties. Hence, the agent is

a computational system that is intended to simulate the behavior of an entity to achieve its own26

goals, interacting with the environment and other agents.

3.1.3 Environment28

The environments in which agents are inserted and emerged have different kind of properties

that determine its behaviors, collectively and individually, and each one should execute the cor-30

responding actions along time to reach goals fulfillment. Those properties could be described as

[Woo02]:32

21

Simulation

• Accessible versus Inaccessible: The accessible environment is characterized by providing to

agents, when required, full, precise and updated information about it. Most of the realistic 2

environments are not accessible because information cannot be available due to environment

or entity constraints; 4

• Deterministic versus Non-deterministic: A deterministic environment is characterized for

the production of same result for the certain action, not existing uncertainty in its execution. 6

The realistic environments are all non-deterministic due to complex system properties that

cannot be securely predicted; 8

• Static versus Dynamic: A static environment could be described as non-changeable, exclud-

ing when agent performs some action. In other hand, dynamic environments vary indepen- 10

dently from agent’s action, being the most alike with the real world environment;

• Discrete versus Continuous: An environment could be defined as discrete, if it has a fixed, 12

finite and limited number of actions, like a DFA in which has a set of states that can describe

the actual environment, not existing a temporal component for the action’s execution. 14

Regarding the accessibility characteristic, Wooldridge claims that as much an environment is

accessible, much easier would be the construction process of an agent, being more efficient its 16

behavior modeling. This idea is easily justifiable since an agent is an independent entity that

always makes the correct choice, being an accessible environment a good factor for its correct 18

implement.

The deterministic environments are preferable regarding the agent’s construction, in which 20

there is no uncertainty associated to agent’s action. In other words, an action that has always the

same result doesn’t have to measure the repercussions, in the environment and in other agents, of 22

its execution, trying to deal with the exceptions that can occur.

The construction of agents, with cooperative or independent properties, is hampered by the 24

ineffective capability of plan construction, regarding a dynamic environment. The production of

plans is very used in the context of MAS, being very effective in static environments, in which the 26

process of plan conception takes into account the non-changeable properties that can guarantee

always the expected execution of actions. Being a plan a set of tasks for further execution, in a 28

context that environment changing is certain, the prediction of tasks effects is not viable [AT90].

The chess game is by itself a discrete environment, in which the number of board configu- 30

rations is very high but finite, making an agent implementation in chess context more efficient

comparing with continuous environment. One of the difficulties regarding the continuous envi- 32

ronment refers to computer themselves as a discrete space and not continuous. The environment

simulation could be performed, but some time will always exist an incompatibility between the 34

finite physical resources from computer and the continuous environment to simulate. Some infor-

mation has to be lost in the process for the simulation to continue, lowering that way the precision 36

of agent’s behavior [Woo02].

22

Simulation

3.2 Military Simulation

In military simulation, there are different accuracy levels and real world representations that2

goes from Major Field Exercises to Analytical Models. The most alike real world simulations

are the Major or Minor Field Exercises, in which the simulation runs in its proper conditions,4

taking into account the environment dynamics. This approach can guarantee a more reliable and

accurate simulation in its Operational Realism, which entails in an increased cost. In other hand,6

Analytical Models are a totally different approach comparing with the real world implementation.

Those models are intended to create an abstraction of the environment representation, in which8

the behaviors and strategies could be computationally simulated, that entails in more Convenience

and Accessibility. The purpose of both spectrum ends are the same, being the validation of new10

behaviors for the real world implementation. Figure 3.2 shows the most used definitions for the

military simulation implementation.12

Figure 3.2: Military Simulation Range [Tay83]

3.2.1 Properties

For the proposed simulation platform, several properties should be considered for a minimum14

accuracy and reliable system’s implementation. Some of those requirements are exposed in the

underlying section, describing and defining the most important properties like obstacle avoidance,16

communication and speed.

• Obstacle Avoidance: The obstacle avoidance property of military warfare replication is18

one of the most important issues. Since certain vehicles could not undergo through certain

regions due to its characteristics - like maritime assets that can only move in water conditions20

– that planning route between to different points is necessary. Along with this property, the

shortest path could be also calculated for a more accurate replication;22

• Communication: The communication process represents the interaction of different vehi-

cles in the simulation. This property is intended to define the ontologies for the messaging24

understanding between entities, providing pertinent information for coordination and coop-

eration purposes;26

23

Simulation

• Speed: The capacity of vehicles’ displacement through the environment regarding its char-

acteristics is an important approach due to entities dynamics. As it is known, a defense 2

configuration should be heterogeneous regarding the purposes of each vehicle, being this

way necessary the replication of speed; 4

• Sensors: The environment perception is a characteristic inherent to the sensors of each ve-

hicle. The sensors have the capability to perceive information of the environment, allowing 6

the entity to act according to its own beliefs and external conditions. As said before, the

characteristics of the each entity are different, being necessary the flexibility in the percep- 8

tion definition, e.g., perception radius. The sensor replication can be implemented using

different types like Navigation Radar, FLIR Camera and Daylight Camera; 10

• Effectors: Effectors are intended to avoid the action’s continuity of opposite force. It can

be performed using several objects like Long Range Acoustic Device, Optical Disruptor 12

and Spot Light. Most of these effectors’ usage is performed in presence of enemy forces in

protected areas, in which they should be captured, or interrupted. 14

24

Chapter 4

Problem and Motivation2

Protection of cooperating nations like it’s proposed by NATO is the main issue that is pro-

posed to be solved. The competition for resources and force demonstration represents the new4

paradigm of war. Those new parameters of war are intended to play a more strategic and complex

approaches, in which brute force and old strategies revealed to be not that effective and efficient6

nowadays.

The purpose of the platform’s development arise from the difficulty of telling if a certain con-8

figuration is enough secure to promote an effective surveillance regarding a determined protected

area. The problem has the main issue of selecting the best configuration that should be used for10

the harbor protection and surveillance.

4.1 Motivation (DAT-POW and Safeport)12

The development and real warfare application of strategies and individual behaviors is hampered

by its life-threatening and multiple situations that should be validated. Simulation is a common14

process used in this type of circumstances due to the modeling of real life situations along with all

entities that make part of it. Latency of events, waiting time between strategies development and16

its testing in real life, entails in longer waiting times, which is usually an important parameter. The

usage of a DSS (Decision Support System) along with a Simulation environment is the approach18

used for the simulation of surveillance systems, producing a result which is a quality measure of

the configurations being tested.20

SAFEPORT is a project that aims to develop an application that will help the selection of the

best configuration of surveillance systems for harbor and force protection. One of the components22

of the DSS will simulate the behavior of surveillance system and possible threats. These elements

span from human forces units, to sensors, unmanned systems, and vessels. The simulation will24

use several configurations of the defensive elements (proposed by the optimization algorithms)

against different kinds of attacks under various environmental conditions in a specific operational26

scenario. These simulations will help to enhance the proposed solutions and, at the same time,

feed the DSS with the results of the several solutions targeting different metrics.28

25

Problem and Motivation

The final result of the SAFEPORT project will be made available to the NATO partners for

planning the best defense configurations to force protection in a port or harbor environment. 2

4.2 Goals

For the implementation of this project the main goal is to simulate a given configuration of 4

objects, which could be vehicles, sensors and a mapped region, along with associated behaviors

and actions to each object. 6

The usage of agent-based architecture to the simulation implementation is also an objective

to reach in this project. One of the main dissertations purpose is the validation of multi-agent 8

systems implementation for the military simulation. The definition of different agent’s architecture

with heterogeneous behaviors and the communication protocol is intended to provide a warfare 10

representation.

An interface is an important implementation in order to validate the behaviors and mapped 12

regions within the simulation. The interface is supposed to allow the input of configuration files,

as well as running the simulation with the common usability of it, like play, pause and stop bottom. 14

Finally, the main goal of this platform is to provide a reliable feedback to the DSS that should

influence new posterior executions of the application as a whole. This feedback is intended to 16

calibrate the DSS for further results be adequate for a given configuration file, being this way

adaptive and sensitive to the simulation validation. 18

26

Chapter 5

Implementation2

5.1 Platform

5.1.1 JADE - Multi-agent System Framework4

The multi-agent system framework chosen for the implementation of the simulation project was

JADE which is a software framework that uses the Java programming language for the multi-agent6

system implementation [Bel07]. JADE is FIPA-compliant – a setting computer software standard

for agent development - meaning that implementations in the same or different programming lan-8

guage can interact within the same environment, creating a flexible approach for open systems

that wishes the inlet and outlet of agents. A FIPA standard also allows the proper communication10

between agents by defining ontologies for agent’s understanding of exchanged messages within

its container’s.12

Architecture
14

Regarding the creation of agents, it is always needed at least one identifier which can be the

FIPA Agent Identifier (AID), being an agent label that distinguishes it unambiguously. Hence,16

an agent should be registered in a transport address in order to be identified for the multi-agent

system’s interaction. The execution of agents is made recurring to containers that host the agents18

that should communicate and interact in a multi-agent architecture’s definition. In JADE, there’s

a principal container - main-container - that has a mandatory execution independent from the cre-20

ation of another’s, and two different agents are created with it: the Directory Facilitator (DF) and

Agent Management System (AMS). The first one is not mandatory, and provides yellow pages22

services - accurate, complete and timely list of agents – to all the authorized pages, and the second

provides coverage of container’s operations such as migration, creation and deletion of agents.24

The JADE architecture allows the creation of several containers that could be distributed over the

network, enabling the distribution of computer processing and the execution of different contain-26

ers at the same time, in different locations. Figure 5.1 represents the relationship between the

elements that composes JADE platform and the tools to promote a container’s interaction.28

27

Implementation

Figure 5.1: JADE architecture [Bel07]

The communication through agents living in different containers is possible using the Inter-

nal Message Transport Protocol (IMTP) and it is not mandatory the usage of FIPA standards 2

for the interpretation of messages, since it is used for the internal platform communication only

[Bel07]. For the identification of registered agents in the containers, a Global Agent Descriptor 4

Table (GADT) is maintained in cache that provides its current status and location in the JADE’s

system. 6

The agent’s execution is promoted by the usage of behaviors, which are tasks that should per-

form within an environment, with or without agent’s interaction. Each agent can have several 8

behaviors running at the same time, performing different tasks like, e.g. receiving and interpret-

ing of others agent’s messages, and explore the environment for mapping information. All the 10

associated behaviors to an agent should implement an action and done function, for defining the

way of acting and identifying if the behavior is or over, correspondently. The action method is 12

called when the behavior should be performed, and done method is called when the behavior is

terminated. 14

There are several types of behaviors that promote and facilitate the flexibility that an agent

should have within an environment. As example of that are: one-shot behaviors – which perform 16

the action method one time; cyclic behaviors – the action method is executed whenever it is called;

generic behaviors – have associated a trigger to execute the action method. 18

5.1.2 FIPA - Foundation for Intelligent Physical Agents

Since it is used the JADE framework to model the agents, the communication is based on 20

FIPA-ACL Messages, which is one of the most used language [Koe04]. The ACL message is

a simple ASCII codification, which increases the time processing due to the need of parsing and 22

interpretation/codification of results. The structure specification of ACL message was defined by

Foundation for Intelligent Physical Agents [fIPA00] as a set of elements: Type of Communicative 24

Act; Participants in Communication; Content of Message; Description of Content; and Control

Conversation. The only mandatory element in ACL messages is the performative (Type of Com- 26

municative Act), but is expected to also be defined the sender, receiver, and content.

28

Implementation

For the communication’s understand between agents, FIPA-ACL standard defined a set of

communicative act – label that describes the intent of communication – which is the central guid-2

ance in the messaging interpretation when the communication protocols are implemented. The

Library Specification of communicate acts is divided into different purposes like interrogatives –4

information query; exercitives – asks for an action to be performed; referentials – assertions about

the world’s environment; phatics – establish, prolong or interrupt communication; paralinguistics6

– relation between messages; expressives – attitudes, intentions or beliefs [Bel07].

5.2 Conceptual Solution8

The description of project in overall terms gives the reader an general overview of its purpose

preparing for the best understanding of all the specific details and the justification of certain ap-10

proaches. This section is the central explanation of the whole dissertation project, in which will be

explained the physical architecture, logical architecture, class model, multi-agent architecture and12

agent architecture. Those subsections will be explained in depth for the user’s full understanding

along with the reasons that leads to its implementations.14

For the model construction, several steps should be taken, like simulation, until the final model

emerges [Per10]. The military modeling strategies could go through some phases of the model16

generation, but most of the times it is implemented in real-world, which is the approach that

ensures more reliable results due to the difficulty of real-world simulation due to the obstacle18

of modeling the real-world dynamics. Hence, the real-world validation of military strategies is

very expensive due to its implementation using the means that composes its simulation, being20

the phases of computer modeling validation and verification [Sar91] almost the same. Most

of the times there are huge costs to know if certain plans and tasks are effective in a warfare22

situation, and more important, the human life-threatening which is measureless. Regarding these

constraints, for the proper validation of military situations, several simulations should be done due24

to environment dynamics and the limitless exceptions that have to be analyzed and contemplated

in the reformulation of the final model.26

5.2.1 Physical Architecture

The physical architecture intends to show the interactions between outer components of the28

whole SAFEPORT project and the simulation platform, which is represented in Figure 5.2. For

the underlying diagram, there will be explain in depth each interaction and its meaning within the30

project context.

As said before, the DSS should provide a configuration file in which the characteristics of the32

vehicles, sensors and mapped area are specified, being the source of the simulation. The details of

proposed XML-based [Bra08] file are exposed in 5.2.3.34

In the configuration file, information like characteristics of the vehicle, mapped area along

with the dimensions of the region could be defined. For the reading of the configuration file an36

interface was created to allow users an easy and quick access to the means for the simulation

29

Implementation

Figure 5.2: Physical Architecture

start. It is in the Java Simulator where all the processing is executed with the modeled multi-

agent architecture and the definition of each agent. For the behavior modeling is used external 2

information, allowing users to change the behavior from simulation to simulation. These strategy

files are explained in depth in 5.2.3. The configuration and strategy files are the external factors 4

that should be provided for the proper simulation run. When the simulation ends, a validation file

is created with all the statistics of the simulation run that contains all the information about the 6

given configuration validation, for the DSS to analyze. All the workflow explanation should be

used as a cycle until the best result attainment. As simulation don’t reproduce the exact real-world 8

dynamics, the usage of several simulations runs is a normal practice forming a cycle between the

DSS and the Java Simulator 10

5.2.2 Logical Architecture

As it is known, for the development of a multifunction application it’s necessary the usage of 12

different technologies to reach the best solution. Hence, the logical architecture diagram, presented

in Figure 5.3, is a representation of all the platform components that implement all the developed 14

functionalities, from interface to multi-agent system.

Regarding the interface, it is composed by java SWING toolkit [RV03], for the user inter- 16

action, and Processing programming language [Rea07] for simulation animation. SWING is a

Java GUI (Graphical User Interface) widget toolkit that is intended to provide visual components 18

that provide the interaction between the user and platform, and Processing is an open source pro-

gramming language that could be developed in its IDE (Integrated Development Environment) or 20

integrated with other languages like Java and C++, and different IDE’s – e.g. Eclipse.

30

Implementation

Figure 5.3: Logical Architecture

Those two different approaches are the core of the interface that provide, in one hand, an easy

user interaction, and for another, a real-time simulation representation for behavior validation and2

observation. Is through SWING interaction that the simulation starts, using the control panel that

allows start/continue, pause and stop the simulation. When the configuration file is inserted into4

the platform, the corresponding number of agents and mapped region are created with the specified

characteristics. For each agent could be associated a strategy, that is independently modeled by a6

XML-based file, giving user the possibility to adapt and update the simulation to be more adequate

to its purposes of simulation. The interaction between agents and the multi-agent system only8

starts with the user’s will.

Since the simulation is based on a multi-agent system, it should use an agent development10

framework for the multi-agent and agent architecture definition. To accomplish that, the JADE

framework [Bel07] was used, which includes a useful communication protocol – FIPA (Founda-12

31

Implementation

tion for Intelligent Physical Agents). The whole multi-agent architecture was modeled in JADE

along with each agent architecture. Both of implementations are based on previous studied archi- 2

tectures, but were adapted for the context of the problem. Being the simulation a mean to get the

final result, it takes into account the beginnings of the components architecture implementation, 4

using the property of continuous time, represented by a single step, for the warfare execution. For

the simulation an agent was created being all the execution it’s up the JADE middleware. The 6

execution of platform is represented by the Java Simulator which comprises the Java SWING,

Processing and JADE middleware. Hence, all the external communication that a platform should 8

logically have, is with the operating system, through the Java Virtual Machine (JVM), and the

user, being all the remains factors not included for the platform to interact. 10

One widely used platform is Repast [Nor06] which is an open-source modeling and simulation

toolkit. Despite the whole simulation and modeling process, this platform has also an interface 12

for the user’s visualization of environment dynamics. The strong reason that led to the JADE plat-

form choice was the more appropriate functionalities that JADE provide for the military warfare 14

simulation comparing with Repast. As said before, the interface is not a requisite of the system,

not being the available interface of Repast a point in favor of its usage. The main purpose of the 16

simulator’s platform is to replicate real-world warfare, using message exchanging, ontologies and

a multi-agent architecture that implements the world dynamics, which is provided by the JADE 18

framework in an easy and fast way.

5.2.3 Modular Communication 20

Configuration File
22

For the simulation platform it is needed some information regarding in what conditions it

should be started, executed and finished. Hence, a XML-based file was created to fulfill this com- 24

ponent interaction, which is divided into four different sections. The definition of each section

is located independent, meaning it could be placed in some point of the configuration file. The 26

first explanation regards the number of steps that simulation should be to be considered done, the

second takes into account the dimensions of the mapped area, the third is intended to explain the 28

mapped regions in the environment, and the fourth refers to the vehicles that will be used in the

simulation process. 30

Most of the simulation platforms executes in a period of time, not being associated a termina-

tion condition like resources depletion in a predator’s prey environment, or certain value of profit 32

in an economic process. Regarding the context of military warfare, the simulation should not ter-

minate when all the agents of a team are captured or when an enemy invades a protected zone, 34

but when the number of steps reaches the stipulated value. The XML example presented in 5.1

is intended to model the termination of the simulation process, using the <steps> tag within the 36

<Simulation> tag.

As can be from 5.2, the dimensions definition is a simple tag that defines the how many cells 38

will be used in the three dimensional modeled space. In the example, we are defining a region

32

Implementation

1 <Simulation>
2 <steps>5000</steps>
3 </Simulation>

Listing 5.1: Simulation Definition

with 500 cells in the x-axis, 500 cells in the y-axis and 500 cells in the z-axis. All the following

definitions of areas and vehicles should respect these boundaries for the good execution of the2

simulation process.

As presented in 5.3, the definition of areas has also a simple implementation that is very4

intuitive and easy to produce quick results. The example presented is intended to define a square

land region with 40 cells in each edge. The tag for the areas definition is <Areas>, along with a6

single area definition tag <Area>. In each area tag there are a set of tags that are needed to be

fulfilled. The first on is the type of the mapped area - <type> - which is land in the presented8

example. The possible set of constants for this definition is:

• CELL_LAND: definition of land region;10

• PROTECTED: definition of protected region. The type of this area definition is related to

validation processes, in which a certain region is not intended to be invaded with enemy12

team elements.

In the simulator we are not interested in defining the sea areas due to the default initial set of14

the whole are as sea, and then the user can define all the land areas. The simulator was conceived

this way due to its maritime context, knowing that more sea region will be mapped against land.16

The second set of tags the needed to be filled are <point>. The tag point is intended to define a

single vertex of the shaped area, and all the point will be connected in the forming the pretending18

area. The order of the points is important for the linking shape process, not being independent

from the place they are defined. In the example were defined four different points only using the20

x-axis and y-axis, making a plane that could be seen in the animation of the developed interface,

since it only shows the two dimensional space of x-axis and y-axis.22

The final tags of the XML-based file completion from the three needed refers to the vehicle

definition. For the definition of several vehicles the tag <vehicles> is needed, along with the single24

1 <Dimensions>
2 <x>500</x>
3 <y>500</y>
4 <z>500</z>
5 </Dimensions>

Listing 5.2: Dimensions Definition

33

Implementation

1 <Areas>
2 <Area>
3 <Type>CELL_LAND</Type>
4 <Point>
5 <x>10</x>
6 <y>10</y>
7 <z>0</z>
8 </Point>
9 <Point>

10 <x>50</x>
11 <y>10</y>
12 <z>0</z>
13 </Point>
14 <Point>
15 <x>50</x>
16 <y>50</y>
17 <z>0</z>
18 </Point>
19 <Point>
20 <x>10</x>
21 <y>50</y>
22 <z>0</z>
23 </Point>
24 </Area>
25 <Area>
26 ...
27 </Area>
28 </Areas>

Listing 5.3: Areas Definition

34

Implementation

vehicle definition tag <vehicle>. All the vehicles have some characteristics that should be gathered

and implemented in the configuration file. Those tags are:2

• <team>: this tag refers to the team definition being the possible constants BLUE_TEAM or

RED_TEAM. A vehicle to be addressed to a team for the good execution of the simulation;4

• <type>: the type tag refers to the type of vehicle independent from the addressed team. The

possible constants for this tags are: TYPE_PATROL or TYPE_NORMAL;6

• <goal>: is the goal of the vehicle when it is initiated. This is an important attribute because

it defines the behavior of the entity for the simulation, with the possibility of changing. The8

set of possibilities of this tag is flexible, since it is possible to add and remove constants

from the structure file which possesses all the constants to be utilized in the simulation;10

• <behavior>: this is the tag where to file with the containing behavior information is ad-

dressed to a single vehicle. The definition of the strategies XML-based file is specified in12

5.3.2. All the files that are associated to a single vehicle should be in a directory named

"behaviors" in same folder of the application;14

• <speed>: the measure of speed in the simulation and commonly used in the real world

maritime velocity representation was the knot – 1knot = 1.852km/h. the maximum value16

for this parameter is 40, due to the most maximum speed of most patrol ships used in the

military warfare;18

• <radius>: the tag radius is intended to specify the length of the circular perception that it

has from the environment. It could be applied either to an entity that is a vehicle (moving20

entity) or to a sensor (non-moving entity);

• <coordinate>: this tag specifies the location of the vehicle in the environment, which is22

supposed to be a valid coordinate. The initiation of the simulation will fail if the coordinate

is malformed. For its definitions, only the x-axis and y-axis are considered into the present24

simulation platform.

The full version of the XML-based file could be seen in A with different modeled areas,26

different team vehicles, types and located in several places in the environment.

Validation File28

For the simulator’s platform, the validation file is not defined yet, since it depends on the DSS30

implementation which is an independent institution that is responsible for it. The main information

this file should contain refers to the statistics of the simulation performed with the correspondent32

configuration file. The basic and mandatory information is the following:

• The number of defense vehicles;34

35

Implementation

1 <Vehicles>
2 <Vehicle>
3 <team>BLUE_TEAM</team>
4 <type>TYPE_PATROL</type>
5 <goal>GOAL_DEFENSE</goal>
6 <behavior>beh_escort_patrol.xml</behavior>
7 <speed>15<speed>
8 <radius>40</radius>
9 <Coordinate>

10 <x>140</x>
11 <y>110</y>
12 <z>0</z>
13 </Coordinate>
14 </Vehicle>
15 <Vehicle>
16 ...
17 </Vehicle>
18 </Vehicles>

Listing 5.4: Vehicle Definition

• The number of strike vehicles;

• How many times a strike vehicle entered in a protected area without be seen; 2

• How many strike vehicles were captured.

All the information is updated along the simulation’s execution and generated when it ter- 4

minates. Those parameters were provided by the SAFEPORT team and represent the pertinent

information that should be considered by the DSS to calibrate its configuration file generation. 6

Structure File
8

For the organization and categorization of certain parameters like vehicle’s goal or the per-

formative’s message, labels should be written and used for the interpretation of messages and 10

behaviors between agents. One major example of its application is in the definition of behavior

to each agent in the strategy XML-based file. Since the behavior’s definition is dependent from 12

parameters like perfomative’s message, vehicle goal’s or even which action should be performed,

the usage of this type of file for the labels definition gains a total reason to exist. Hence, the struc- 14

ture file is a set of labels for the simulation platform to interpret, and the main tag is <struct>, and

for each label definition should be used the <element> tag. 16

5.2.4 Class Model

The purpose of the class diagram is to show the developed classes for platform implementa- 18

tion, its attributes and methods, along with the interactions between classes, in a simple and easy

36

Implementation

1

2 <Struct>
3 <Element>CELL_LAND</Element>
4 <Element>CELL_SEA</Element>
5 <Element>PROTECTED</Element>
6 <Element>BLUE_TEAM</Element>
7 <Element>RED_TEAM</Element>
8 <Element>UNDEFINED</Element>
9 <Element>TYPE_PATROL</Element>

10 <Element>TYPE_FRIGATE</Element>
11 <Element>TYPE_NORMAL</Element>
12 <Element>GOAL_DEFENSE</Element>
13 <Element>GOAL_STRIKE</Element>
14 </Struct>

Listing 5.5: Structure File

representation. Since the programming language used to develop the application is Java, an object

oriented and class-based, the class diagram, Figure 5.4 is the proper representation of the system2

architecture and each class will be explain in the following:

• IO: This class is responsible from the reading of XML files and its interpretation. Those files4

are the configuration file and strategy that could be associated to each vehicle. This class is

also intended to create vehicles instances for the simulation usage, as well as the mapped6

region in which the agents should interact. The class uses the Document Object Model

which is a language-independent that interacts with objects in HTML, XHTML and XML8

documents [Hor00], for the parsing of input files. The construction of vehicles instances

lies in the further association with agents, along with its behaviors;10

• VEHICLE: One of the main classes is the vehicle class, which is where all the information

and characteristics of a vehicle is created. The characteristics that compose a single vehicle12

are: team; type of boat; initial, final and actual position; plan; goals; perception radius;

velocity and associated behavior. This class is intended to be associated to each agent,14

being a real-world representation providing the agent the needed information for the correct

environment interactions.16

• PLAN: We’ve seen that plan is a constituent part of a vehicle. Hence, the plan is constituted

by a set of tasks which could provide a complex behavior of the vehicle. The set of tasks is18

implemented by a LIFO (Last in Last out) that is intended to be flexible in a way that if a

certain new task appear and is added to the set, it would be immediately executed, and when20

it is terminated, the previous associated task could execute normally by the order they were

inserted.22

• TASK: A single task is just a certain path which has an initial and final point. The possible

paths to be created are from two types: goto and survey. The goto path is just a straight24

37

Implementation

Figure 5.4: Class Model

line between initial and final points with no obstacles. If the calculated path has some

obstacle that don’t allow the direct connection between initial and final points, an alternative 2

38

Implementation

Figure 5.5: Survey Behavior

path is provided to circumvent it; the survey path is a complex behavior constituted by

circumferences and straight lines. A survey behavior is composed by a certain number2

of circumferences within a bigger circumference, which is created taking into account the

provided radius for the bigger circumference. As can be seen from Figure 5.5, there are five4

circumferences that are equally placed along the bigger circumference.

This is a typical behavior for the surveillance of a certain region varying with the previously6

defined radius.

• BEHAVIOR: The behavior class aims in create a flexible way of each agent know how8

it can act taking into account the interaction between agents. This class has two different

types of message sets, one regarding the received messages, and the other the messages that10

should be sent. As agents are reactive entities, each message as an action associated to.

There’s the possibility of an agent only receive a message without replying, for the purpose12

of inner state update – like agents localization – and has associated to it a certain action like

goto or survey behavior. The same approach is applicable to the sent messages, which could14

induce a personal action. An agent could have initial actions that should be prioritized and

begin without any interaction with the remaining agents. Hence, and regarding the XML16

files for the modeling strategy that each agent could associate, this approach is supposed to

create a personal protocol that gives response to specific cases and creating an heterogeneous18

multi-agent system, where each agent has its own behavior.

• MESSAGE: This class is the definition of message that should be received from and sent20

to different agents. A single message is constituted by an entity – agent that sent or should

receive the message; performative – label the represents what type of message should be22

39

Implementation

received; infoType – the type of information that is sent in the message; goal – the goal state

that an agent should have to validate the message. This is important to validate due to the 2

reception of same messages for different behaviors; info – the information associated to the

message; conditions – this is a parameter that only exists in the sent messages. Most of the 4

times, a message is sent due to the reception of one another, and this condition parameter

is from the same type of its own class - message – to ensure that the received message is 6

validated for the sending of actual message; actions – this parameter is a set of actions that

should be queue to an agent for the beginning of its own actions without the influence of 8

other agents or even its own perception.

• ACTION: This is a simple class that only helps to organize the information of an action. An 10

action is just a movement of an agent that could be one of the two previously explained tasks

– goto and survey. This class is constituted by type - the type of the action (goto or suvery); 12

coord – the associated coordinate that indicates the agent where to go. If the action is goto,

the coordinate indicates the final point, being the initial point its actual location. If the action 14

is survey, the coordinate indicates the central point of the bigger circumference survey task;

radius – this parameter is only valid for the survey task, in which a radius is needed; goal 16

– the goal that should be set for the inner state representation of agent. This class is used

by the behavior class, in which represents the initial actions that an entity should perform, 18

and by the message class, for the execution of certain behavior either if it’s a receiving or a

sending message. 20

• COORDINATE: This is a simple class that is intended to give a more flexible approach

about the environment simulation. It is formed by three different parameters: x, y, z; that are 22

the representation of a three dimensional coordinates. Despite its simple implementation, it

is a very important class since almost the developed classes use this type of information for, 24

e.g. location and path calculation.

• CELL: The class is part of the mapped region and constitutes the information of a single 26

cell in the created board which is the environment representation. The cell information is

composed by: person – which entity is in the cell; type – the type of cell (sea or land); 28

protectedZone – indicator of protected zone cell. This information allows the map to be

constituted by a set of cells, being easy its implementation and update according to the 30

environment dynamics.

• MAPPER: For the environment representation, a class was created to promote the creation 32

a single instance that is accessible to the entities. This representation is composed by a set

of cells forming a three dimensional space, limited by the given dimensions of the mapped 34

area. It’s in this class where all the information about the environment is located, being

changed with the environment dynamics, disregarding the dimensions of it. 36

• BOARD: For the user’s interaction, the board class was implemented allowing the load-

ing of configuration files, the simulation initiation, along with pause and stop. This is an 38

40

Implementation

important class not only due to its intermediate function between the application and user,

but also for the simulator developer that needs some feedback from the modeling behav-2

ior work. The class is constituted by: sim – the animation panel representation; width and

height which are the dimensions of the mapped region.4

• SIMULATIONINTER: The animation of the simulation platform is implemented by the

simulationInter class. This class uses an Processing java interface that is implemented for6

the usage of the core functions which allow the good animation’s execution. For this imple-

mentation, the following information is needed: grid: representation of the cell’s animated8

board; height and width – the size of the representation panel; cols and rows – the number

of lines and columns that the board should.10

• BROKENRULE: In certain situations, when the messages are exchanged between agents,

there is the need of more information. The agents have rules that could be broken along the12

simulation execution, representing a change in the agent plans. The common occurrence of

this broken is due to the perception of an enemy or an unknown object in the environment.14

This class is constituted by: dest – the coordinate that promoted the broken rule; rule – the

violated rule.16

• STRUCTS: This class was developed with the intent of aid the other class implementation.

The main functions are related to path calculation and obstacle avoidance. The importance18

of this class refers to the validation of the simulation, and as said before, the behaviors of

agents and its proper replication in the simulator is a major indicator of good results.20

• GROUPING: Is an auxiliary and simple class that guides the formation of a group. One

important concept for the military context is the communication with a single group for co-22

ordination of behaviors. This class as only a set of names that are its participants and is used

by the agents that need to know the partners of its own group for an adequate communica-24

tion.

• TEAM AGENT: This class is an implementation of the Agent class of JADE, which pro-26

vides a set of functions to override that guides the agent modeling. The team agent is one of

the agents that constitutes the multi-agent system, and is intended to represent the vehicles28

that are used for the simulation. The parameters of this class are: enemyCoord – the coordi-

nate of the perceived enemy. This variable is only filled if the vehicle if after a single enemy;30

entity – the main responsible of the group. All groups have an entity the controls and guides

it; vehicle – the representation of the associated vehicle with all its characteristics; group –32

set of names that belong to a group; grouping – indicator of agent’s participation in a group.

• FORCE AGENT: As the all the agents, within a JADE agent-based platform, the force34

agent should implement the agent interface that JADE provides. This class is a represen-

tation of the agent that regulates the simulation of warfare, and communicates to all the36

41

Implementation

environment integrated agents. The constitution of this class is: step – the time represen-

tation variable; numIterations – the maximum number of iterations for the simulation to 2

terminate; agents – set of agent names for communication purposes; warning – set of agents

names. The warning variable was conceived to regularly warn a set of agents for its own 4

purposes, and it’s activated by request from the team agents.

• ENVIRONMENT: This class is also an agent implementation of JADE middleware, and is 6

intended to simulate the environment conditions like weather and sea dynamics. Hence, the

variables used are: state sea – state of sea conditions; state environment – state of weather 8

conditions. These states are regularly sent to the force agent for the influence update in

communications and environment perception. 10

All the presented classes represent the system entities that allow the proper function and the

functionalities that were modeled when the development of the platform. The interaction between 12

classes is an important property of the system, in which classes use the representation of another’s

to build its own representation. 14

Environment
16

Regarding the environment that should be developed and replicated for a good simulation

of real world military dynamics, the previously properties presented in 3 have to be considered. 18

For a perfect simulation replication, is expected that vehicles have only local perception of the

environment, and the actions to be performed over time, not being executed like states in DFA. 20

All the actions should contemplate the non-deterministic property, in which the executed actions

could have different results, and the environment has the capability to change independently from 22

the agent’s action.

Some of the presented properties are difficult or almost impossible to replicate in computer 24

simulation, due to the complex systems that composes the behaviors of objects to be modeled.

The following description presents the implemented environment in the platform: 26

• Accessible: The modeled environment is accessible due to the local information that it

provides to the agents. Agents can perceive from the mapped region, receiving information 28

about what composes the area, knowing with some associated uncertainty the object located

in some position; 30

• Non-deterministic: What leads to the description of a non-deterministic environment in the

platform, is the associated uncertainty in the information given to the agents, begin revealed 32

the proper information with a probability. All the other cases are deterministic due to the

same action’s repercussions in the environment as planned; 34

• Static: Despite the modeling of the environment agent be prepared for dynamic systems,

the implemented property was static. This means that the environment has no capability 36

42

Implementation

to change independently from the agents’ action. In other words, the environment has no

direct influence in the agents’ execution, not being changed if the agents have no capability2

to perform it. An extreme case, if agent have no actions associated, the environment would

not change either, comparing with the dynamic parameter which allows the environment4

changing and even induce some action in the agents;

• Continuous: The implemented environment is continuous, being tasks and plan performed6

over time desregarding the state property defined as a DFA, characterizing the Discrete prop-

erty. A plan could be reformulated any time, being reliable its execution over a continuous8

time, independent from others and with an associated duration.

As previously said, some properties are quite difficult to develop in computational simulation,10

being the presented properties the correct implementation for the platform requisites, regarding

the simulation properties of the real world.12

5.2.5 Multi-agent Architecture

Like in every agent-based platform a multi-agent architecture needs to be developed, defin-14

ing the interactions between agents and its importance for the problem solving.The architecture

should contemplate the projected relations between entities regarding the real world interpretation,16

ensuring the validation of the model and the consistency of the simulation process.

The multi-agent architecture used for the development of this application is based on the RSAC18

– Rand Strategy Assessment Center – System Software developed in 1985. It was developed aim-

ing the improvement of strategy analysis methods, combining the best features about War Gaming20

and analytic modeling [Hal85]. Along with this system software, ABEL – Advanced Boolean

Expression Language - was used for programming PLDs – Programmable Logic Device - devel-22

oped in 1983 by Data I/O Corporation [Kyu85]. For RSAC application, it was used to write the

decision rules of War Gaming context. The developed application is based in previously presented24

RSAC multi-agent architecture, with a slight change. Hence, the MAS of RSAC is composed

by four different agents: Red Agent; Blue Agent; Scenario Agent; Force Agent. Comparatively26

to military life, the name of Red Agent refers to strike force, and the name of Blue Agent refers

to defense force. The Scenario agent is responsible to simulate all the changes in the dynamic28

environment and the Force Agent combines all the previous agents into a simulation.

The changes of this architecture, that are presented in Figure 5.6, refer to the combination30

of Red and Blue Agents into the Team Agent. The purpose of merging these two agents stands

in the similarity of agent architecture that both presents and ensure that the two teams are at the32

same level of modeling, not allowing the benefit of one of the teams, avoiding a biased simulation

behavior, fulfilling the verification requirements for the simulation development process. In the34

nomenclature of RSAC architecture, NCL and ACL process from each Agent refers to National

Command Level and Area Command Level. The first one is intended to create a plan based on the36

perception that is given to him and the conditions that lead to a plan change, and the second one

refers to the implementation of the plan, sending it for Force Agent execution.38

43

Implementation

Figure 5.6: Multi-agent System Architecture

For the platform implementation, both NCL and ACL processes were developed, being the

communication between the force agent and the team agent indirect sometimes and direct by 2

others. In the multi-agent architecture was added a Data Dictionary intended to gather all the in-

formation from vehicles, mapped region and so on. This type of approach allows the reduction 4

of exchanged messages between agents, speeding up the simulation time performance, gathering

the information more quickly creating an indirect communication between agents. All the re- 6

maining information is gathered by messages exchange, using the FIPA-ACL messages that JADE

middleware provides [Koe04]. 8

The simulation is initiated when all the agents update its plans in the Data Dictionary so that

force agent can gather the necessary information for the simulation to run. When the simulation 10

is running, there are events that need to be reported for the team agents re-planning and suitability

to the new environment conditions. The force agent communicates directly to the team agent 12

reporting what was unexpected to happen that needs a reformulation of its behavior, which leads

to the strategy update in Data Dictionary. This message exchange is called wake-up rule due the 14

stand-by acting, from team agent, when the planning update and simulation execution. Regularly

the environment agent sends the information about the environment dynamics to the changing 16

of simulation conditions that influences the agent’s interaction and perception. This influence

is represented by the probability variation of enemy detection and maximum range perception 18

reduction.

44

Implementation

5.2.6 Agent Architecture

This section is intended to present each agent in detail and explain the main goals of each one.2

As said before, the multi-agent system is composed by three different agents that are capable of

give response to the simulation process needs.4

• Team Agent:For this kind of simulation which implies the modeling of two different teams,

an agent, that represents a single vehicle, is need for its representation. In this case, by the6

entities similarity from different teams, the same agent is used for the two teams. This also

implies that both strike and defense teams have the same capability to respond a certain8

modeling needs, developing strategies for each side not discarding the importance of vali-

dating the defense team. It’s the team agent that is responsible for the strategy planning and10

given response to certain environment dynamics.

Regarding the sensors definition, it’s implementation is performed by team agent due to the12

flexibility of adaption to a modeling process. In this case, a sensor is just an object of a team

agent that have the capability to percept, but it can’t move along the environment, being14

only a platform that is always in loitering process. As well as the modeling of vehicles in

the simulation platform, the sensor has the capability to communicate and report information16

that is important for the simulation process, and more specific, for the team that is affiliated.

• Environment:The modeling level of environment agent is quite simple, since its functions18

are the sea and weather updates to the force agents. This modeling was maintained simple

due to the further adequate modeling of this agent from a specialized institution.20

• Force Agent:The main function of this agent is to gather all the received information from

environment and team agent, and apply it for the simulation execution. From the execution22

of a single step to the group forming process, this is the central coordination agent that

guides the simulation of real-world and ensures that every received information is included24

and the final result is a consequence of it.

BDI software model26

The BDI software model, agent’s beliefs desires and intentions, is widely used for the im-28

plementation of intelligent agents, being a replication of real world behaviors regarding planning

guided by goals to solve particular problems within the simulation environment [Bou04]. This30

type of software model is intended to guide the agent to a better problem solving, aiding in the

selection of a proper plan, and the execution of it. The implemented agent that used this type of32

software model, is the Team Agent, which is the only that replicates the vehicles in the real world,

being capable of planning and interaction.34

• Beliefs: Beliefs are the conditions that constitutes the actual state about the world. The

beliefs cannot be mistaken as knowledge due to the fact of sometimes its beliefs are not36

45

Implementation

the truth, but only opinions about what it sees. This property of the software model can be

compared as the NCL of the RSAC multi-agent architecture that entails in the gathering of 2

information, like the actual environment properties, for the plan production;

• Desires: Desires can be seen as goals that are intended to simulate the motivation of an agent 4

to execute a certain action. This motivation leads to what an agent should accomplish for

the problem solving, being implemented in the platform like the inner representation of the 6

agent’s goal in its actual state. Those desires should guide the plan in its production phase,

and it could influence what tasks should be performed, reaching the proper and adequate 8

plan for its desires;

• Intentions: Intentions are the actual intention of an agent in performing an action when it 10

has begun to be executed. In other words, is the motivation in the execution process and

not before an action’s performance, being capable of influence its continuity, leading to a 12

plan reformulation or not. It can be seen as the ACL of the RSAC multi-agent architecture,

in which all the information is sent for the plan’s execution, implemented in the simulation 14

platform.

With all the presented characteristics [Geo95], a proper and adequate software model for the 16

agent’s development was used, leading to an effective and efficient usage of agents in the first

place, and the MAS for the second. This implementation is a good approximation of the real 18

world execution, in which there are always goals that have to be fulfilled, the perception that

agents have from the environment and other agent, and its motivation over a plan execution, to 20

reach a problem solving.

22

Communication
24

Like in the real-world communication, an understanding is needed for the interactions be-

tween entities. Multiple communication ways are available like speaking, writing, gestures, along 26

with several ontologies which are represented by languages. Hence, the usage of multi-agent

system ontologies in the agent-based platform is needed for the agents understanding and coordi- 28

nation. The communication between agents should provide the needed information for the correct

simulation execution. To ensure it, there were needed two different types of classes explained in 30

5.2.4: brokenrule and grouping. Those two classes implement the Java serialization instead of

using the ontologies provided by JADE. This is due to the simple and powerful means to convert 32

Java objects into sequences of bytes, which is the type of information exchanged in ACL Mes-

sages [Bel07]. There are three main advantages of using ontologies provided by JADE instead of 34

serializable classes:

• Independent from JADE agent implementation: Interpretation of messages between differ- 36

ent agent implementation, since they are FIPA-compliant;

• Human-readable format when using the Sniffer agent for communication analysis; 38

46

Implementation

• No need of knowing the object that an agent is receiving.

The advantage in the usage of ontologies instead of serialization by Java lies in the fact of no2

existence of other agents that could communicate to the simulation platform that are not JADE

implementations, but FIPA-compliant. All the agents that exist in the simulator are JADE im-4

plementations, so its interpretation of serializable classes is an easy and fast implementation, and

there’s no possibility to other external agents join the simulator, making a non-open system. For6

this reason, an agent knows previously what type of messages he will receive, being capable of

understanding every message that he receives from the multi-agent environment. There is a possi-8

bility of communication with an external agent that represents the weather dynamics, but it is not

implemented yet, and a possible ontology cannot be implemented until its definitions. Since the10

usage of Sniffer agent is much adequate in negotiation cases, for the protocol implementation of

the simulator, the Sniffer agent was not used. The type of messages is not plural enough to justify12

its usage, and the implementation of the multi-agent system is intended to reduce the exchanged

messages, giving emphasis of not using the Sniffer agent.14

Hence, and for all the previous reasons, an ontology were not implemented, allowing a fast

transactions of messages which is one of the more important requisites of all developed applica-16

tions: temporal complexity.

5.2.7 Interface18

For the representation of the simulation process, there are different approaches that should be

considered when using a java implementation and a multi-agent system for simulation. Regarding20

the java implementation, there are GIS’s (Geographical Information System) that provide a well

and effective performance in the environment representation that could be integrated with Java im-22

plementations. A powerful toolkit developed by Open Source Geospatial Foundation is GeoTools

[Jod11], which provides a full integration with java implementations, a real representation of the24

environment, and uses JTS_Topology_Suite Geometry. This type of toolkits is very useful since

it is not necessary the implementation of an interface representation, but most of them are heavy26

for the system, being inappropriate for simulation means. One purpose that simulation implies is

the fast feedback for real time usage, being a requisite for the development of this project. So,28

instead of using a GIS, a simple representation of the environment – essentially land and sea –

was created, providing quick results for the animation process, not delaying the simulation. More30

important than that, is the non-mandatory animation representation of the simulation for the user,

devaluing the interface that will be only used in specific cases, giving strength to the fact of not32

using a GIS with all the detail of the real world.

The simulator platform is composed with two different sections: animation and control panel.34

The first one refers to the animation of the simulation, which represents the movement of the

vehicles allowing the user to see its execution in the environment, and the second one refers to36

the tools that allow the initiation, pause, stop and load of configuration files. The control panel

as the basic user interaction needed for the well function of the simulator platform. Regarding38

47

Implementation

Figure 5.7: La Spezia, Italy mapped area

the area fill problem, the most difficult issues found was an algorithm that could handle large

areas, and finding an inner point of the area mapped. Those were the main obstacles for a good 2

representation of the mapped region provided by the configuration file. With the combination of

those two methods, all the provided areas from the configuration file could be well represented 4

and mapped in the user’s interface. For the area filling, the flood-fill algorithm was used, being

an easy understanding and implementing algorithm, along with the ray-cast algorithm to find a 6

polygon inner point. The final combination of those two methods can be seen in Figure 5.7, that

uses different polygons with different shapes positioned in different sections of the environment. 8

The following subsections explains the methods used and examples of its functions.

Flood Fill algorithm 10

For the areas that have the perimeter delimited with the final color of filling, the flood fill algo- 12

rithm is a good and viable approach. The algorithm is based on a neighbors’ structure, searching

for cells that are not filled in the expected color until non neighbor of the unfilled cells remains. 14

For the algorithm implementation, it uses recursion method, meaning that the same function is

called in itself. This method is used when the behavior of the function needs to be applied several 16

times, depending on results of previous function calls. One of most well-known applications of

the algorithm is for the factorial calculation. The recursive factorial function only has one stop 18

condition: function parameter, which is an integer higher than 0, equal to 1; and for all the re-

maining cases, the parameter function is multiplied by the result of the same function call, with 20

48

Implementation

1 Factorial(number):
2 If number equal to 1, return 1
3 Otherwise, return the number multiplied by Factorial(number-1)

Listing 5.6: Factorial calculation using Recursion

the parameter decremented in one. This leads to a number of the same function calls equal to

the number given for the factorial calculation. The pseudo-code of the factorial calculation using2

recursion is presented in 5.6.

As can be seen from 5.7, the function implementation includes the instruction call of itself,4

using the same behavior. The algorithm starts with an inner position of the delimited area, the

color to fill, and the color that should be replaced. With this information, the algorithm searches6

for neighbors that are no filled with the intended color, and calls the function again with the same

parameters, but the inner position updated for the new neighbor cell.8

The version of the algorithm that is presented uses a neighbor structure that only analyzes four

neighbor cells (north, east, south and west), being possible the extension for eight cell searching10

(north, north & east corner, east, east & south corner, south, south & west corner, west and west

& north corner). For the implementation of the simulator platform was used the four neighbor12

structure, due to cells’ line that limits the area are linked sometimes by corner cell’s, making the

eight neighbor structure inadequate.14

Most of the times, the mapped area should represent regions from the real implying a very

high number of cells that constitutes the simulated environment. Due to heap problems (dynamic16

memory allocation) using recursion, the space needed to keep the function calls in memory is

higher than heap available space. So, a solution was found using queue data structure to store the18

functions’ call information, which uses the stack, instead of heap, that has more available space.

Regarding this changes, the pseudo-code of the final flood fill algorithm is presented in 5.8.20

1 Flood-fill (node, target-color, replacement-color):
2 If the color of node is not equal to target-color, return.
3 Set the color of node to replacement-color.
4 Perform Flood-fill (one step to the west of node, target-color, replacement-color

).
5 Perform Flood-fill (one step to the east of node, target-color, replacement-color

).
6 Perform Flood-fill (one step to the north of node, target-color, replacement-

color).
7 Perform Flood-fill (one step to the south of node, target-color, replacement-

color).
8 Return.

Listing 5.7: Flood Fill four-way algorithm pseudo-code

49

Implementation

1 Flood-fill (node, target-color, replacement-color):
2 Add the node the queue
3 While queue is not empty
4 Set the color of node to replacement-color.
5 If one step to the west of node has the target color
6 Add one step to the west of node to the queue
7 If one step to the east of node has the target color
8 Add one step to the east of node to the queue
9 If one step to the north of node has the target color

10 Add one step to the north of node to the queue
11 If one step to the south of node has the target color
12 Add one step to the south of node to the queue
13 Remove node from the queue’s head
14 Return.

Listing 5.8: Flood Fill four-way algorithm pseudo-code

Ray Casting
2

The ray casting algorithm was based on Jordan Curve’s theorem, which says "any ray from

inside a polygon crosses an odd number of edges on its way to infinity" [Hai90]. This means that 4

if we start with a point that is out the filling surface, and if we trace a line through the polygon,

an inner polygon point could be found between the odd and even crossed times, not the other way 6

around. Figure 5.8 shows and example of ray casting method, in which could be seen that points

between 1 and 2, and between 3 and 4 are inner points of the polygon. 8

Figure 5.8: Ray Casting

The presented example shows that ray casting is an easy way of finding inner points from a

polygon, but for the implementation of this method, a valid line that crosses the polygon should 10

be calculated. Hence, it was used the maximum and minimum point of the polygon in the x-axis,

being possible the calculation of the central region of the polygon. With this x-axis coordinate, 12

50

Implementation

Figure 5.9: Ray Casting Implementation

which is for sure valid, all the y-axis coordinate are calculated creating a line that crosses the

polygon. Figure 5.9 shows an example of the simulator implemented method.2

SWING
4

As previously said, the developed interface is composed by SWING components which are

intended to interact with the user, turning the simulation experience not only more appealing but6

also easier and effective. The created interface is composed by the normal interaction with a

simulation environment – Start, Continue, Pause and Stop – allowing users to interact in a much8

richer way and control the simulation for analysis purposes. The user has the capability to load the

configuration file to the simulator, enabling the execution of only the selected files and not prede-10

termined ones, and run several different simulations in a certain order. For the user’s guidance of

the simulation’s animation, information about the number of past steps is presented, useful for the12

analysis time comparison of actions and strategies. The final component that constitutes the user’s

interface is the slider simulation speed, which allows the user to manage the speed of simulation’s14

animation. This component is useful for the selection of certain situations that need to be analyzed

with a slow motion detail. Figure 5.10 presents the created interface previously described, with16

La Spezia, Italy region model loaded.

The major limitations of SWING are related to performance issues, more specifically with an-18

imation and video representation. SWING uses its own handle to deal with the computer graphics,

instead of using the native API’s of the Operative System, e.g. DirectX on Windows. To correct20

this situation was used Processing for the simulation component’s representation.

51

Implementation

Figure 5.10: Simulator’s Interface

Processing
2

For the animation components of the simulator, the Processing programming language was

used. It was mainly created for teaching computer programming through a visual context, to serve 4

the electronic arts and visual design communities, being totally directed to representation and ani-

mation. It was totally written in Java, and all the Processing language is parsed to be translated into 6

Java or Javascript, for Operative System applets or web-based programming, correspondently. The

animation has a much better performance with Processing usage, instead of grid table, not only 8

in the mapped region representation, but also for the vehicles presentation and animation. The

animation is represented taking into account the strategies of each agent, and the mapped area the 10

configuration file with the simulation properties.

5.3 Functionalities 12

5.3.1 Obstacle Avoidance

Regarding the piano mover’s problem, several algorithms were developed to solve this type 14

of problems. The problem is based on moving from an initial point to a final point, avoiding

several platforms that are in the way of its trajectory. This problem can be extrapolated for a 2D 16

approach, in which platforms are polygons, and trajectories are lines within a grid, simplifying the

implementation of solutions to the problem. 18

52

Implementation

Some well-known algorithms proposed for the piano mover’s problem are Potential Fields

[Kha95], Bug’s algorithm [Ste90] or Brush Fire Algorithm [Cho04] which are used on the2

robotics for path planning calculation. The Potential Fields is an algorithm based on physics,

in which the entity that is moving towards the environment is a particle that is attracted to its final4

destination, and the obstacles represent a set of particles with repulsing properties. In every step

of the moving process, the gradient is calculated to analyze in which direction the main entity6

should progress towards the final destination. This type of approach has a major problem due the

inflexibility knowing if the particle stabilizes in a local position instead of the final one. Since the8

movement of the particle is dependent from the polygon’s form, the concave shapes could limit

the behavior of this algorithm, not being totally effective.10

Another algorithm is the Brush Fire, based on neighbor structure to calculate the shortest path.

The algorithm uses distances from the final path coordinate to the initial, determining which is12

the shortest path being totally independent from the obstacles that could exist in the environment.

Since it uses a neighbor structure to progress, the algorithm needs to calculate all the neighbor14

cells until it reaches the initial coordinate of the path, being a problem in high number of cells in

mapped regions. The number of cells that the algorithm needs to analyze is very dependent from16

the location of the initial position, not having a constant performance. For the reasons previously

presented, none of the algorithms was implemented due to temporal complexity problems. The18

information used for the path calculation in the simulator’s platform differs from the previous ap-

proaches, since it provides the area’s location and its constitution points, changing the paradigm of20

robot path planning which only uses the local information to calculate its route. Like the real world

warfare, the information about the operation area is known using satellite communication or pre-22

vious knowledge of the region, being totally proper and reasonable a personalized implementation

despite of the local perception of the agents.24

The implemented algorithm takes into account the number of obstacle vertexes that a vehicle

should pass to reach the final coordinate. The algorithm is recursive since it needs to use the same26

behavior until the stop condition is verified. The first step of the algorithm is to know for which

direction of the obstructed area it should move. To do that, the longest visible point of both initial28

and final are calculated, and the number of points between them are also calculated in clockwise

and counterclockwise directions. The ensure the shortest path in both directions, the distance30

between the initial and final points of a single direction are calculated and compared, in which the

next point in a certain direction is the longest visible point – no obstacles between - regarding the32

actual point.

The modeled area of La Spezia, Italy is taken as an example, and can be seen that the correct34

direction should be the lowest distance between the initial and final points, as it is presented in

Figures 5.11 and 5.1236

This algorithm guaranties the correct orientation for the obstacle avoidance, along with the

shortest path through the polygon. This approach combines the pertinent area vertexes that should38

be included in path planning, and the minimum distance through each direction calculation. The

final product is the shortest path, simulating the normal action of the maritime forces in the real40

53

Implementation

Figure 5.11: Example 1: La Spezia

world.

5.3.2 Strategies 2

One of the main aspects of the platform’s development regards parameterization, which allows

changing the inputs according to users’ will, reaching its goals. To give this type of flexibility 4

taking into account the agents’ behavior, a XML-based file was created. All the possible allowed

simulator’s behaviors could be modeled in a simple and effective way using the XML modeled 6

files, which can be fully seen in A.2. The file’s structure is segmented into three different sections:

initial actions, receive message and send message. Those sections will be specified and explained 8

with real world’s examples giving a utility’s overview of the platform independent modeling of

behaviors. To fully understand and take better advantage of the modeling behavior, two different 10

concepts should be explained: grouping and warnings. Those concepts are not mandatory, but

represent a major aid for the behaviors implementation, allowing users to produce strategies in a 12

more quality way and easily.

Grouping 14

Most of operation and control systems need to coordinate and organize its entities for mis- 16

sion completion using the group properties to ensure a higher performance and effectiveness. To

create the notion of group, there’s always a responsible entity for the group’s coordination, and the 18

remaining entities that constitutes the group, that mostly receive orders and execute actions from

54

Implementation

Figure 5.12: Example 2: La Spezia

the central entity. The workflow of a group constitution an messages that should be sent for the

group’s forming is presented in 5.13.2

As can be seen, for the group’s forming, an agent should solicit the service by sending a

message, indicating the number of agents that the group should have, to the force agent. The4

entities are available vehicles in which the goal is GOAL_DEFENSE, representing they are not,

e.g. pursuing an enemy or in a group. The available agents receive a message with the entity that6

has the central role in the group, for the possibility of identifying who have sent the message. The

main entity of the group receives all the names of the group’s formation for communicate and give8

orders of what should be done and coordinate all the actions. To terminate the group, the main

entity should inform the force agent sending a message with RULE_END_GROUP performative.10

This will induce a messaging from force agent to the group entities informing that they are no

longer the group. With this approach of force agent’s regulation, the group formation can be12

controlled avoiding one entity belonging to several groups at the same time, as the main entity of

the group. Hence, it is very important for vehicles that are intended to be available for this type of14

concepts to initiate with GOAL_DEFENSE in the configuration file. Otherwise, the force agent

could not identify agents for the group’s formation.16

Also related to the grouping concept, there is a case that was modeled for the well function of

the simulation, which regards the detection of the enemies in its radius the perception. In case of18

enemy detection, the agent should contact the main entity of the group requesting authorization

for enemy capture. Those behaviors are modeled in the software, and the acceptance of the main20

entity is associated with a fifty percent change. This value only represents the possibility for

further usage of the simulator, being possible the modeling of associated probability.22

Warning
24

Most of the times, entities need to promote a periodicity for informing purposes and do some

state update of the vehicles. A good example is the usage of warning’s process in group formation,26

in which an escort behavior should be done. The periodicity of informing the actual position of

the escort entity to the patrol ships is essential, promoting an inner group state up to date with the28

55

Implementation

Figure 5.13: Grouping communication

exact coordinates of the escort vehicle, for the patrol ship to follow and provide the right defense

means. The Figure 5.14 represents the work flow process of the warning service between agents. 2

The warning service should be requested to the force agent that regulates all the simulation,

which implements the time component of the environment. The request message should only 4

contain the RULE_REQUEST_WARNING performative for the service activation, and from the

periodicity of 10 step simulation the agent should be warned to promote the modeled action that 6

is associated to.

Initial Action 8

When the simulation is initiated, agents could have associated some actions that should be 10

executed without external influence, promoting pro-activeness in simulation process, when inter-

actions are do not represent an important issue. The given XML example 5.9 represents a simple 12

initial action of survey, explained in 5.2.4, in which survey action’s radius, measured in number

of cells, and the central coordinate should be specified. The possible constants for the <type> 14

tag are: GOTO; SURVEY; GOAL. In case of GOTO constant usage, only the coordinate should

be specified, like the given example, and for the GOAL constant, a <goal> tag should be added 16

specifying the goal update for the agents. Any value of goal constant can be written, since it exists

in the structure XML file. 18

Send Message
20

For the agents to send a single message to another’s, creating this way a communication pro-

tocol and a way of interaction, some conditions should be verified, knowing if it is the proper 22

56

Implementation

Figure 5.14: Warning Communication

message to send. An example of the condition XML code can be seen in 5.10, being constituted

by <performative> – label that describes the type of communicative act; <sender> – the agent that2

sent the message; and optionally <goal> – goal associated to the agent that receives the condition

message. The <goal> parameter is optional due to the necessity of sending messages indepen-4

dently from the agent’s goal in cases that goal is not a constraint. The major strength of goal’s

parameter is in same message reception, with different agent’s action, being a constraint for the6

correct reply choice. Within a condition, an action could be performed being an important pa-

rameter from the XML model since most of the message’s reception is associated an execution8

constant: GOTO, SURVEY or GOAL. In case of GOTO In a condition parameters, multiple ac-

tions could be specified, allowing the user, e.g. to create a plan that is constituted by several tasks.10

The XML example in 5.10 is a representation of a simple condition to be associated with a send

message modeled behavior.12

Regarding the information of the message to be sent, it is composed by <to>– the receiver

1 <init_action>
2 <type>SURVEY</type>
3 <radius>25</radius>
4 <coordinate>
5 <x>100</x>
6 <y>250</y>
7 <z>0</z>
8 </coordinate>
9 </init_action>

Listing 5.9: Agent’s initial action example

57

Implementation

1 <condition>
2 <performative>RULE_ARRIVE</performative>
3 <sender>grouping</sender>
4 <goal>GOAL_DEFENSE</goal>
5 <action>
6 <type>GOAL</type>
7 <goal>GOAL_PATH</goal>
8 </action>
9 <action>

10 <type>GOTO</type>
11 <coordinate>
12 <x>450</x>
13 <y>20</y>
14 <z>0</z>
15 </coordinate>
16 </action>
17 </condition>

Listing 5.10: Sending message condition

agent’s name; <performative> – label that describes the type of communicative act; <infoType> –

type of information to be sent; and an example can be seen in 5.11. 2

The constants to use in <to> label are restricted to forceAgent – the agent that regulates and

performs the simulation; entity – the principal entity from the grouping concept; grouping – the 4

whole group of the grouping concept, despite of central entity. Regarding group issues, the central

entity can send message to the group using the textitgrouping label, but the remaining entities of 6

the group only can communicate to the entity using the textitentity. The direct communication

of agents is avoided due to the complexity of the XML files to promote a single and efficient 8

communication protocol. If agents want to communicate, they should form a group and com-

municate between them, being independent the agents that constituted the group form the whole 10

environment. The <performative> tag accepts all the constants that the user inserts, since it exists

previously in the structure XML file that contains all the labels to be used in the simulation pro- 12

cess. Information could be added to a message, since its type is specified in the <infoType> tag.

The accepted constants of this tag are: NON – no information associated; NUMBER – the infor- 14

1 <send>
2 <to>forceAgent</to>
3 <performative>RULE_END_WARNING</performative>
4 <infoType>NON</infoType>
5 <condition>
6 ...
7 </conditon>
8 </send>

Listing 5.11: Send message

58

Implementation

1 <receive>
2 <from>forceAgent</from>
3 <performative>CFP</performative>
4 <infoType>NON</infoType>
5 <action>
6 <type>GOAL</type>
7 <goal>GOAL_DEFENSE</goal>
8 </action>
9 </receive>

Listing 5.12: Receive message

mation is a number, and is used for the group formation representing the number of needed agents;

ACTUAL_COORDINATE – agent’s actual position. If NUMBER constant is used, another tag2

must be added - <number> - for the number of agent’s attachment to the message.

Receive Message4

The structure of receive message’s parameter on the XML file is similar to the condition’s6

parameter. All used tags are the same, being also possible the user’s definition of several actions

to be performed, and an example could be seen in 5.12.8

With all these three sections, the modeling of protocol communication and behaviors could be

made, resulting in a strategy that could be associated to each agent independently. The major ad-10

vantage of this approach is the adaptation that users can have to the real world strategy operations

changing the agent’s behaviors through simulation to simulation, being only necessary to change12

of XML associated files.

5.3.3 Simulation14

Simulation process is a replication of the real world that is intended to analyze the produced

dynamics to advice and promote the problem solving. Regarding the context of military warfare,16

some concepts should to be implemented for the proper execution of the simulation: Planning

– each agent has an associated plan to execute; Perception – how interpretation of the agents18

should be from the world, and how it is replicated; Effectors - how defense vehicle should act

in the presence of enemies; Process – the whole process of the simulation execution. All those20

concepts are explained in the underlying sections, being specified and dissected for a better user

understanding.22

Planning
24

Planning is the common process of an entity’s organization consisting of several steps that

59

Implementation

should be performed to reach to purpose of its creation. It is commonly used in economy, de-

velopment, project, etc., and also military campaigns, promoting a more effective and efficient 2

approach to the problem solving process. The military behaviors are consisted in several tasks that

could be performed leading to a global or transitory goal fulfillment. For the simulation imple- 4

mentation, planning is a set of tasks in a certain order and independent from each other, in which a

single task is a displacement through the environment. In this platform, the tasks independence is 6

related to the none-necessity of next task’s initial position being equal to the previous task’s final

position. This independence originates a new task that connects the existing gap between tasks. 8

Has said in the early sections, the modeled tasks were the goto and survey that could be weave in

a way that complex behavior can be modeled. When all the actions terminates, the initial actions 10

modeled in the XML file associated to an agent are loaded creating a new plan for the vehicle.

When an agent has a plan associated - set of tasks - and it percepts an enemy, a new set of tasks 12

are added to the plan, not discarding all the previous ones. This approach was modeled with the

intent of represent a transitory detour from the purpose he was intended, being self-regulated and 14

capable of retour according to its basic modeled behavior.

Perception 16

The perception that each vehicle have from the environment was simulated like the real world 18

implementation, using a circumference for the region to be analyzed. The radius of the circle is a

parameter of the configuration file associated to each vehicle, and it could not be changed along 20

the simulation. To set up a vehicle with no perception, the radius only needs to be zero, and not

coordinates will be calculated for the case. The feedback that each agent receives from the envi- 22

ronment perception is deterministic allowing the vehicles to conclude with certainty if an echo of

the sensor is a vehicle from either same or opposite team, not having an associated probability of 24

uncertainty. The perception of the agent is influenced by the environment conditions like weather

and sea. The influence refers to uncertainty and the number or perceived cells from the environ- 26

ment, in which a worst condition from the environment is related to less number of perceived cells

and less probability of knowing exactly the object that the echo returned from the sensor. 28

Effectors
30

The usage of effectors in real life is very difficult to model due to the unexpected behavior

of the both defense and strike force. Hence, the modeled appliance of effectors was simply imple- 32

mented simulating the capture of the enemy vehicle or sensor. The capture is based on the removal

of strike force, and correspondent termination of simulation’s agent, when a defense agent is near 34

it. The modeled distance is 5 cells, and should simply replicate the usage of effectors in a simula-

tion process. 36

60

Implementation

Process
2

Since simulation is a replication of the real world dynamics, the temporal component has to be

modeled in a way that its entities and the modeled environment evolves dependent from it. The4

common implementation of time simulation is the time step that represents the minimum range

in which an action could be performed. It is presented has the minimum range due to the system6

incapability to promote an action with the execution time lowest than the time step. Hence, all

the actions are dependent from the time step, not being allowed to be performed faster than the8

simulation’s replication. The step represents one second in real world, since the maximum speed

of vehicles is 40 knot – 74 km/h – 20m/s, and a single cell represents 20 meters. So, in a case of10

1000 steps of simulation duration, the real world proportion is more and less 16 minutes and 30

seconds. If the simulation is intended to simulate a whole week (7 days) of warfare, the number12

of steps is 604800.

In each step of the simulation, the planning of each agent is executed to simulate the displace-14

ment in the environment. Since the planning is a set of tasks, and a single task is defined by a path

between two or more points, a step in a planning process is the next position of the vehicle in the16

environment.

Associated with the time-step that determines the time component of the simulator, the speed18

of the vehicles is other important component of the simulation, since interaction through environ-

ment like pursuing is performed. Hence, the correspondent speed of 1 cell per step in real world20

is 40 nods – 72 km/h, being the maximum speed of travelling independent from values above 40.

For path planning of vehicles with a lower speed than 40 knots, the slowest speed is simulated22

with the repetition of the next coordinate. For example, if the specified speed was 20, the vehicle

will remain in the same cell twice than a vehicle with a speed of 40 knots.24

All the simulation’s sections explained previously are an adequate approximation of the real

world dynamics, from obstacle avoidance to the time step simulation, and even the implementation26

of the planning concept for the correct execution through the environment.

61

Implementation

62

Chapter 6

Validation - Case Study2

Tabletop exercises are composed by a set of scenarios that are intended to be simulated to

test the response capability of an organization to a given event. Those exercises should simulate4

the environment dynamics with some fidelity and accuracy, for further reliability in the real world

implementation.6

The strong reason for the usage of tabletop exercises lies not only in testing the response ca-

pability of assets, but also for implementation validation. Those two purposes are the important8

previously explained Verification, Validation and Accreditation – Figure 2.2 – that should test the

configuration file properties that are provided from DSS – Validation process – and the well devel-10

opment of the implementation to reach the best results – Verification process. The Accreditation

process is dependent from the modular communication with the DSS, in which it should validate12

if the result should be good or bad, regarding the provided configuration file.

In the following section will be presented two different tabletop exercises for both Verification14

and Validation processes. The first one is intended to show a simple and small example of certain

platform’s capabilities, and the second is proposed to present a more complex situation, showing16

other platform’s capabilities that could not be explorer in the first exercise.

6.1 Tabletop 118

The presented case study is composed by the three members of the defense team (blue vehicles),

which will perform the grouping, warning and authorization for enemy approach, and two mem-20

bers of the strike team (red vehicles) which only represent sensors, with no movement associated.

Figure 6.1 represents the initial state of the simulation process, with the vehicles placed taking22

into account the configuration file, with the associated behaviors.

The main goal of this presented case is to create an escort situation from the initial location24

of the escorted vehicle to the lower left corner, in which two available vehicles are selected for

the task’s completion. The enemy vehicles (sensors) are located in positions which allow the26

perception of the escort vehicles, and the authorization process is initiated for the sensors capture.

63

Validation - Case Study

Figure 6.1: Case Study 1: Initial state

The underlying subsection is intended to explain how the described situation could be simply

modeled, and platform’s execution. 2

6.1.1 Configuration File

The modeled configuration file defines a dimension region as 100 x 100 cells, with simulation 4

duration of 500 steps. The land region is constituted by clockwise orientation points that defines

the final area representation – the brown filled cells - with a protected area located in the central 6

sea parallelepiped region between land, presented in Figure 6.2.

Blue Team 8

Regarding the blue team members that are available for the escort process, the parameters are 10

defined as 6.1. The vehicle is defined as member of blue team - <team> BLUE_TEAM </team>

- and its type is a normal patrol ship - <type> TYPE_PATROL </type>. For grouping purposes, 12

which is the case, a vehicle only should be selected if its goal is set as GOAL_DEFENSE. This

allows the force agent to know which entities should select and inform for group formation. The 14

perception radius and speed vehicle are defined as 20 cells - <radius> 20 </radius> - and 20 knots

- <speed> 20 </speed>. The last parameter of the vehicle’s definition is the location, in which a 16

coordinate tag is used with the x, y and z-axis, being its initial position 30, 50 and 0. As previously

said, the z-axis is discarded in this platform due to the scenario’s representation using two dimen- 18

sions. The remaining escort vehicles only differ from its initial position. The escorted vehicle

has a behavior file associated, that regards the underlying description, which describes the way 20

he acts through the environment, using the defined communication and interaction processes. The

file definition is made using the behavior tag - <behavior> 1_beh_defense_new.xml </behavior> - 22

64

Validation - Case Study

Figure 6.2: Case Study 1: Protected Area

and the specified strategy XML-based file should be placed in a folder called behaviors, and the

folder placed in the root of the project.2

1 <Vehicle>
2 <team>BLUE_TEAM</team>
3 <type>TYPE_PATROL</type>
4 <goal>GOAL_DEFENSE</goal>
5 <radius>20</radius>
6 <speed>20</speed>
7 <Coordinate>
8 <x>30</x>
9 <y>50</y>

10 <z>0</z>
11 </Coordinate>
12 </Vehicle>

Listing 6.1: Blue Team: Escort Vehicle

Red Team
4

As previously said, the members of red team represent sensors that only can perceive and has not

any associated movement. For this matter, the specification of red team is the same as blue team’s6

escort vehicles, despite of team member definition - <team> RED_TEAM </team> - and its goal

- <goal> GOAL_HOLD </goal>. The definition of GOAL_HOLD regards the non-movement of8

the vehicle, being independent from its type definition. The modeling vehicle section is presented

in 6.2, and specifies the previously explained parameters.10

65

Validation - Case Study

1 <Vehicle>
2 <team>RED_TEAM</team>
3 <type>TYPE_PATROL</type>
4 <goal>GOAL_HOLD</goal>
5 <radius>20</radius>
6 <speed>0</speed>
7 <Coordinate>
8 <x>80</x>
9 <y>50</y>

10 <z>0</z>
11 </Coordinate>
12 </Vehicle>

Listing 6.2: Red Team: Sensor Vehicle

The full version of configuration file is presented in A.

6.1.2 Strategy file 2

For the grouping concept to be performed, an strategy file should be associated to the main en-

tity of the group, which is responsible for its formation, coordination and termination. In this case 4

study situation, the escorted vehicle the central entity of the group and might specify the number

of vehicles to join, the location of the group vehicles and the authorization of group leaving. The 6

presented strategy file is divided into two different sections: force agent communication; group

communication. As explain previously in 5.3.2. for the grouping concept to begin, a message 8

should be sent to force agent - <to> forceAgent </to> - specifying the type of message - <perfor-

mative> RULE_GROUP </performative> - the type of information sent - <infoType> NUMBER 10

</infoType> - and the number of agents to join the group - <info> 2 </info>. Since this message

is sent in the beginning of the simulation, the condition should be as follows - <performative> 12

INIT </performative> - and sender - <sender> INIT </sender>. The full specification of message

sending in presented in 6.3. 14

1 <send>
2 <to>forceAgent</to>
3 <performative>RULE_GROUP</performative>
4 <infoType>NUMBER</infoType>
5 <info>2</info>
6 <condition>
7 <performative>INIT</performative>
8 <sender>INIT</sender>
9 </condition>

10 </send>

Listing 6.3: Group Formation Message

66

Validation - Case Study

1 <send>
2 <to>grouping</to>
3 <performative>RULE_FOLLOW</performative>
4 <infoType>ACTUAL_COORDINATE</infoType>
5 <condition>
6 <performative>RULE_GROUP_FORM</performative>
7 <sender>forceAgent</sender>
8 </condition>
9 </send>

Listing 6.4: Group Reunion Message

The next step of the escort behavior that should be defined is the selected members’ reunion

near the entity. To promote this strategy a message should be sent for the group - <to> grouping2

</to> - to reunite - <performative> RULE_FOLLOW </performative> - near the central entity

- <infoType> ACTUAL_COORDINATE </infoType>. For the group to go for a sent location,4

the RULE_FOLLOW should be used, not being possible the user’s definition, like other’s rules

that an be specified in the structure file. The information type that should be sent is the actual6

location of the escorted entity, and it should be sent only when the force agent gather all the

possible vehicles for the group formation. Hence, a message should be received from the force8

agent - <sender> forceAgent </sender> with the success of group formation - <performative>

RULE_GROUP_FORM </performative>. The full specification of message sending to the group10

for reunion in presented in 6.4.

When the escorted vehicle initiates its way out of the protected area, it should inform the12

whole group of its location using the warning service that force agent provides. The message

should be sent to the force agent - <to> forceAgent </to> - with warning service’s message type14

- <performative> RULE_REQUEST_WARNING </performative> - that don’t have any informa-

tion associated - <infoType> NON </infoType>. To synchronize the message sent with the group16

arrival, a message from all the members - <sender> grouping </sender> - should be received with

the proper message type- <performative> RULE_ARRIVE </performative>. In 5.3.2 section, it18

was explained that an action can be associated with a message reception, allowing the behavior

definition the vehicle. In this case, when all the members of the group arrive near the escorted20

vehicle, it can initiate its displacement through the environment to its final location. Hence, the

action is defined as a simple movement along the environment - <type> GOTO </type> - to its22

final position specified by x, y and z-axis to 85, 85 and 0, correspondently. The full specification

of warning service initiation, group arrival and displacement for the final position is presented in24

6.5.

For the group update of the escorted entity, the warning service from force agent should be26

taken into account. To promote that, a message should be sent to the whole group - <to> grouping

</to> - with the proper type of message to follow - <performative> RULE_FOLLOW </performa-28

tive> - and with the its actual position - <infoType> ACTUAL_COORDINATE </infoType>. The

67

Validation - Case Study

1 <send>
2 <to>forceAgent</to>
3 <performative>RULE_REQUEST_WARNING</performative>
4 <infoType>NON</infoType>
5 <condition>
6 <performative>RULE_ARRIVE</performative>
7 <sender>grouping</sender>
8 <action>
9 <type>GOTO</type>

10 <coordinate>
11 <x>85</x>
12 <y>85</y>
13 <z>0</z>
14 </coordinate>
15 </action>
16 </condition>
17 </send>

Listing 6.5: Warning Service; Group Arrival; Action Execution

interpretation of the warning service is made by the reception of force agent’s message - <sender>

forceAgent </sender> - with the warning service label - <performative> RULE_WARNING </per- 2

formative>. The full specification of group update is presented in 6.6.

Regarding all the previously protocol specification, it should be terminated when the escorted 4

entity arrives to its specified destination, and two messages might be sent: group deformation;

warning service dissociation. Hence, when the entity’s displacement terminates, the force agent 6

informs it by sending a message - <sender> forceAgent </sender> - with the adequate message

type - <performative> CFP </performative>. For the group deformation a message to the group 8

should be sent - <to> grouping </to> - with proper deformation information type - <performa-

tive> RULE_END_GROUP </performative> - with no information associated. The main entity 10

of the group is the only one that can dismember it, since it is the former. For the warning ser-

vice termination, a message to the force agent should be sent - <to> forceAgent </to> - with the 12

warning dissociation’ message type - <performative> RULE_END_WARNING </performative>

1 <send>
2 <to>grouping</to>
3 <performative>RULE_FOLLOW</performative>
4 <infoType>ACTUAL_COORDINATE</infoType>
5 <condition>
6 <performative>RULE_WARNING</performative>
7 <sender>forceAgent</sender>
8 </condition>
9 </send>

Listing 6.6: Group Update

68

Validation - Case Study

- with no information associated - <infoType> NON </infoType>. The full specification of group

dissociation and warning service termination is presented in 6.7.2

1 <send>
2 <to>grouping</to>
3 <performative>RULE_END_GROUP</performative>
4 <infoType>NON</infoType>
5 <condition>
6 <performative>CFP</performative>
7 <sender>forceAgent</sender>
8 </condition>
9 </send>

10 <send>
11 <to>forceAgent</to>
12 <performative>RULE_END_WARNING</performative>
13 <infoType>NON</infoType>
14 <condition>
15 <performative>CFP</performative>
16 <sender>forceAgent</sender>
17 </condition>
18 </send>

Listing 6.7: Group Dissociation and Warning Service Termination

6.1.3 Simulation

The simulation is initiated like presented in Figure 6.1, and the strategy protocol starts to4

execute along with the simulation initiation. The first action that is performed is the reunion of the

group around the escorted entity. Figure 6.3 represents the agents’ position when they arrive near6

the request entity for grouping. All the requested entities for the group formation are displaced

equitably along the main entity through a circle. In this specific case, since the number of request8

vehicles is 2, one of them is placed right above the escorted vehicle, and the other right above.

For the simulation process, the escort vehicles should follow the main entity of the group to10

its final location. The following process is presented in Figure 6.4 which can be seen the vehicles

placed around the main entity. The actual positions of the escort vehicles relativity to the escorted12

one are not the same, due to the delay of the force agent’s warning service.

The group leaving for the enemy’s sensor capture is a possibility if the main entity authorizes14

it. Figure 6.5 presents the situation when authorization is conceded to the two agents, and initiates

the displacement to capture the sensors.16

When all sensors are captured and the main entity arrives to its destination, the escort vehicles

return to its initial positions, being the simulation of grouping, warning services and authorization18

process complete. For the appliance of this case study in others situations and modeled regions,

the same method should be used, being guaranteed that the same result should be obtained. The20

presented situations of this case study also can be executed when obstacles are presented, in which

the shortest path is calculated and performed.22

69

Validation - Case Study

Figure 6.3: Case Study 1: Group Formation

Figure 6.4: Case Study 1: Group Following

6.1.4 Results

The final results of the simulation process are presented in Table 6.1, in which the validation 2

should be created. As could be seen from the previous presented case study, there were three

agents of blue team (defense agents), and two agents/sensors from red team (threats). Since red 4

team entities were sensors and could not move through the environment, they didn’t enter in the

protected area, and like the authorization to leave the group was conceived, all the sensors were 6

captured.

70

Validation - Case Study

Figure 6.5: Case Study 1: Group Authorization

Table 6.1: Case Study 1: Results

Type Number
Number of defense agents 3
Number of threats 2
Number of unseen threats 0
Number of captured threats 2

6.2 Tabletop 2

The following case study is intended to show a more adequate real-world situation, in which2

the defense force is placed in pertinent locations, and has to avoid the entrance of enemies in

the protected area. Is also intended to present the modeled properties of effectors appliance in the4

strike vehicles, and the final produced results for the validation file. The behaviors are not complex,

focusing the simulation in the basic strategies of entrance surveillance, not being explored the6

grouping or warning service presented in the previous sections.

Other important validation of this case study is the obstacle avoidance of vehicles and the8

associated speed. The red team’s vehicles are placed all over the y-axis the environment’s bottom,

to prove that a good implementation of obstacle avoidance was made, being reliable the simulation10

usage. For the simulation process a more complex configuration file was provided, with seven

vehicles forming the defense force, and nine vehicles constituting the strike force or threats to the12

protected area. The initial layout of the simulation process is presented in Figure 6.6

6.2.1 Configuration File14

As previously said, this simulation is intended to be more adequate for the real-world situation.

Hence, the modeled region was La Spezia, Italy, being the dimensions of the environment 500 x16

71

Validation - Case Study

Figure 6.6: Case Study 2: Initial State

500, and the number of steps for the simulation to terminate is 2000. All the points that constitute

the scenario were modeled by the clockwise orientation. A protected area, presented in purple, 2

was also modeled, which can be seen in Figure 6.7 and represents the real secure zone in the La

Spezia’s harbor. 4

Figure 6.7: Case Study 2: Protected Area

Blue Team
6

The vehicles of blue don’t have a strategy file associated, being all the attack and enemy’s

capture modeled for the user’s easier construction of the simulation model. The parameters of 8

blue team are defined as 6.8.

72

Validation - Case Study

1 <Vehicle>
2 <team>BLUE_TEAM</team>
3 <type>TYPE_PATROL</type>
4 <goal>GOAL_DEFENSE</goal>
5 <speed>40</speed>
6 <radius>20</radius>
7 <Coordinate>
8 <x>282</x>
9 <y>212</y>

10 <z>0</z>
11 </Coordinate>
12 </Vehicle>

Listing 6.8: Blue Team

Hence, the information of the configuration file regarding the blue team’s vehicles is identical

to 6.1, despite of its location, speed and radius. Those three parameters have to be filled with the2

proper information of the modeled situation.

Red Team4

Regarding the red team, a simple strategy file is associated modeling the displacement from6

its initial position to the core of the harbor. This strategy is intended to simply prove if the defense

is prepared to deal with an invasion of the harbor, and certificates if the modeled implementation8

of effectors’ usage is correctly made. The red team implementation is the same as blue team, de-

spising the team – the RED_TEAM label should be used - and behavior tags. The behavior defines10

the strategy that a single vehicle should use, which, in this case, all of them have a strategy file

associated. The strategy file definition could be seen in 6.912

1 <behaviors>
2 <init_action>
3 <type>GOTO</type>
4 <coordinate>
5 <x>150</x>
6 <y>125</y>
7 <z>0</z>
8 </coordinate>
9 </init_action>

10 </behaviors>

Listing 6.9: Simple Behavior

The provided coordinate refers to core of the La Spezia harbor, and all the modeled red team’s

vehicles should move from its initial position to coordinate 150, 125 and 0 of x, y and z-axis,14

73

Validation - Case Study

Figure 6.8: Case Study 2: Displacement of Strike Force

correspondently. To promote this approach, the initial type action of the vehicle should GOTO,

following by the correspondent final coordinate. 2

6.2.2 Simulation

When the simulation starts, all the vehicles are placed like Figure 6.6, and all of them have 4

different types of speeds associated. So, the first feedback of the simulation process it the different

type of displacement through the environment, and the different paths that were taken to reach the 6

final location, as can be seen from Figure 6.8.

The next analysis that should be made is the capture of strike vehicles when a defense vehicle 8

perceives from its defined radius, and entrance of strike agents in the protected zone. As can be

seen from Figure 6.9, some of the strike vehicles were captured by the defense vehicles placed 10

in the entrance of the harbor’s protected zone, and a single strike vehicle entered in the protected

zone. All these events will contribute for the final validation of simulation’s output. 12

The final layout of the simulation is presented in Figure 6.10, in which can be seen that all the

strike force was captured, and only one vehicle entered in the protected zone. From the left side 14

menu can be also seen that the 2000 number of simulated steps, which represents 33 minutes and

30 seconds. 16

6.2.3 Results

For the result analysis of case study’s simulation, Table 6.2 was build based on the simulation 18

results, and can be seen that all the strike vehicles were capture, and only one entered in the

protected area. 20

74

Validation - Case Study

Figure 6.9: Case Study 2: Strike Force’s capture and protected zone’s entrance

Figure 6.10: Case Study 2: Terminated Simulation

Table 6.2: Case Study 2: Results

Type Number
Number of defense agents 7
Number of threats 9
Number of unseen threats 1
Number of captured threats 9

Both presented cases are simple implementation that shows the potentials of the simulation

platform as a warfare replicator, using to different teams’ coordination and organization to promote2

the best performance in task completion and problem solving.

75

Validation - Case Study

76

Chapter 7

Conclusion and Future Work2

7.1 Work accomplished and conclusions

Regarding the planning for the dissertation’s implementation, A, some aspects were fulfilled4

and some not. The scheduling of literature analysis and development of the project were followed

and performed in time, aided by a wiki usage for the project details’ registration and supervi-6

sor’s meeting documentation. The writing of dissertation started later due to needed time of the

project implementation, and the gathering of some reliable results that could validate the simula-8

tion platform. Almost of the requirements were implemented in the simulator, providing a good

and reliable approach for the real-world warfare simulation. The other functionalities that weren’t10

performed are: Several simulation processes running at the same time; Simulation execution in

different machines; Implementation of a Control Agent that could coordinate several simulations12

at the same time;

The execution of several simulations required a more deep study of the JADE framework, and14

a reformulation in multi-agent architecture for the inclusion of a new agent responsible for the

coordination of simulation executions, and provides to the DSS all the gathered information. It16

also implies a study of how a strike forces should perform, in order to execute several simulations

with different number of threats and behaviors that could validate in a better way the defense18

force. For the execution in distributed systems is also needed a deep understanding of the JADE

implementation, being possible to develop a section responsible for it. One of the reasons that led20

to the JADE choice was the possibility to implement a system that can provide the proper feedback

for functionalities that weren’t developed in this project.22

As conclusion, the first aspect that should be underlined is the usage of agent-based system for

simulation in general, and the warfare in specific. The multi-agent system frameworks provide the24

proper tools for the correct and reliable implementation of simulation processes. Communication

process, modeling of agent and multi-agent architecture and distributed system’s execution are a26

few number of the provided tools that can simulate an environment in which agents can organize,

cooperate and compete.28

The second aspect is the construction of complex dynamic systems using multi-agent systems.

77

Conclusion and Future Work

For the simulation process, the most common approach is the usage of differential equations that

only can see the simulation process as a whole, and not specifically, reducing largely the exception 2

treatment that real-world simulation requires. The sum of agents’ behaviors and its interactions

could perform a better implementation of the modeling, since is it based on simple linear modeling 4

for each agent and the non-linear model emerge from the joining of these specificities. Even if the

model don’t behaves as expected, the calibration of the system is much more simple, due to the 6

fact of only changing linear and simple behavior models, and not the approaches like differential

equation that era complicated to solve. 8

Other aspect that should be noticed is the Processing programming language for multimedia

approaches like animation and the easy integration with other IDE’s. Processing language is very 10

simple and intuitive, which allows the fast implementation of interfaces that are very useful for

validating modeled systems and simulation processes. 12

The final aspect is the good replication of the real world warfare which the developed sim-

ulation platform provides. Functionalities like obstacle avoidance, group formation, interactive 14

interface and either independent or flexible behavior definition were successfully implemented.

In this dissertation, two case studies were presented and validated with different purposes and 16

goals, as the whole software explanation from logical to physical architecture, and the simulation

process. 18

Taking into account all the previous sections, can be concluded that the developed platform

is a viable and reliable tool for the defense strategy analysis that can be fully integrated with the 20

DSS allowing the activation of the simulation processes in the NATO’s SAFEPORT project.

7.2 Future Work 22

The future work composes an important part for the project to evolve, and many directions that

could be explored for problem solving. The presented approaches regards the produced platform, 24

and should be implemented taking into account the way it is implemented.

7.2.1 Artificial Intelligence 26

An important and approach that could generate good results for the problem solving, is applying

artificial intelligence methods for the combination of results. The genetic algorithms are known 28

for the merging of at least two solutions, reaching a new one, based on the solution’s codification.

A single solution should be represented as a chromosome, in which the information is coded using 30

an ordered set of genes, despite of its type of coding: binary, numeric, alphanumeric, etc. For

the generation of new solutions, there are two different operators based on biology: mutation 32

and combination (crossover). The first one regards the direct changing a solution by altering a

single gene, and the second one is based on the combination of at least two solutions applying a 34

several crossovers in different parts of the gathered solutions. Crossover is just a common point

of separation of all the gathered solutions to produce a new one. Regarding the different parts of 36

78

Conclusion and Future Work

all solutions resulting of the crossover’s appliance, a single part of each solution is combined with

the chosen parts of the remaining ones.2

In this case, this type of approach could be applied as aid to the DSS generation of new

configuration files. Several solutions proposed could be gathered and applied a genetic algorithm4

to produce new better solutions performing combination and mutations operations. One aspect

that might occur, is the generation of solutions that are not viable, representing a deficient set of6

genes the maps a not possible solution.

This approach could be a one possibility of the huge number of artificial intelligence method8

that could be applied for the solution reaching, and DSS aiding in the decision-making process.

7.2.2 Integration with DSS10

Since the SAFEPORT project as a whole is composed by different independent modules,

an integration process should align the global workflow, in which exchanged data have to be12

matched. A future work can be the improvement of both configuration and validation files for a

better representation of information, e.g. by adding new parameters to XML-based files.14

The definition of KPIs that can evaluate the solution’s performance is also a goal to reach

better results in the future. KPI are intended to measure and evaluate the success or the particular16

activity success of an organization [FG90]. How a certain solution should be evaluated, is the

responsibility of the developing company, with all the knowledge of the implemented system. This18

process is related to the Accreditation process – Figure 2.2 – in which the final behavior/result is

enough precise for its usage in real life situations.20

7.2.3 Sensors and Environment Improvement

The replication of sensors and environment is a great influence to the final result reliability.22

Sensors are replicated in the perception of each agent, which by default has a simple sensor that

gathers information from the field. The implementation of different sensors that can be added24

or removed from each vehicle, is one real-world approach that should be used for the similarity

warfare dynamics. The environment is also an important aspect that influences greatly the per-26

ception and communication of agents. The present implementation is based on none influence

of environment in the simulation process, in which the perception of a single vehicle is always28

guaranteed that retrieves the whole information from the perceived area. The propose is the envi-

ronment representation by an external agent, that don’t interacts with the vehicle agents, but with30

the force agent which implements the simulation dynamics, being totally independent and could

be treated as an external entity implemented in different programming language perhaps, since it32

is FIPA-complicant.

7.2.4 Strategies and Behaviors34

The modeling of behaviors is in some way limited by the implementation of only two types

of displacements through the environment. The production of new complex behaviors, that could36

79

Conclusion and Future Work

use the modeled displacement implementations, like new survey approaches or behaviors that take

in account the whole group coordination, might help the user to model a simpler strategy XML- 2

based file. The communication can also be improved using new communication parameters for the

group coordination and organization in defense methods or even proper implementation of strike 4

strategies, leading to a reliable and most real-world alike.

80

Appendix A

Appendix A2

81

Appendix A

Figure A.1: Dissertation’s Planning

82

Appendix A

1 <Map>
2 <Dimensions>
3 <x>500</x>
4 <y>500</y>
5 <z>1</z>
6 </Dimensions>
7 <Areas>
8 <Area>
9 <Type>CELL_LAND</Type>

10 <Point>
11 <x>0</x>
12 <y>0</y>
13 <z>0</z>
14 </Point>
15 <Point>
16 <x>0</x>
17 <y>499</y>
18 <z>0</z>
19 </Point>
20 <Point>
21 <x>360</x>
22 <y>499</y>
23 <z>0</z>
24 </Point>
25 <Point>
26 <x>270</x>
27 <y>360</y>
28 <z>0</z>
29 </Point>
30 </Area>
31 </Areas>
32 <Vehicles>
33 <Vehicle>
34 <team>BLUE_TEAM</team>
35 <type>TYPE_NORMAL</type>
36 <goal>GOAL_OUT</goal>
37 <behavior>behavior_file.xml</behavior>
38 <radius>10</radius>
39 <Coordinate>
40 <x>150</x>
41 <y>150</y>
42 <z>0</z>
43 </Coordinate>
44 </Vehicle>
45 <Vehicle>
46 <team>RED_TEAM</team>
47 <type>TYPE_PATROL</type>
48 <goal>GOAL_HOLD</goal>
49 <radius>15</radius>
50 <Coordinate>
51 <x>210</x>
52 <y>160</y>
53 <z>0</z>
54 </Coordinate>
55 </Vehicle>
56 </Vehicles>
57 </Map>

Listing A.1: Configuration File - First Part

83

Appendix A

1 <behaviors>
2 <init_action>
3 <type>GOTO</type>
4 <coordinate>
5 <x>100</x>
6 <y>250</y>
7 <z>0</z>
8 </coordinate>
9 </init_action>

10 <send>
11 <to>forceAgent</to>
12 <performative>RULE_GROUP</performative>
13 <infoType>NUMBER</infoType>
14 <info>2</info>
15 <condition>
16 <performative>INIT</performative>
17 <sender>INIT</sender>
18 </condition>
19 </send>
20 <send>
21 <to>grouping</to>
22 <performative>RULE_FOLLOW</performative>
23 <infoType>ACTUAL_COORDINATE</infoType>
24 <condition>
25 <performative>RULE_GROUP_FORM</performative>
26 <sender>forceAgent</sender>
27 <goal>GOAL_DEFENSE</goal>
28 </condition>
29 </send>
30 <send>
31 <to>forceAgent</to>
32 <performative>RULE_REQUEST_WARNING</performative>
33 <infoType>NON</infoType>
34 <condition>
35 <performative>RULE_ARRIVE</performative>
36 <sender>grouping</sender>
37 <goal>GOAL_DEFENSE</goal>
38 <action>
39 <type>GOAL</type>
40 <goal>GOAL_PATH</goal>
41 </action>
42 <action>
43 <type>GOTO</type>
44 <coordinate>
45 <x>450</x>
46 <y>20</y>
47 <z>0</z>
48 </coordinate>
49 </action>
50 </condition>
51 </send>

Listing A.2: Strategy XML-based file model - First Part

84

Appendix A

1 <send>
2 <to>grouping</to>
3 <performative>RULE_FOLLOW</performative>
4 <infoType>ACTUAL_COORDINATE</infoType>
5 <condition>
6 <performative>RULE_WARNING</performative>
7 <sender>forceAgent</sender>
8 <goal>GOAL_PATH</goal>
9 </condition>

10 </send>
11 <send>
12 <to>forceAgent</to>
13 <performative>RULE_END_WARNING</performative>
14 <infoType>NON</infoType>
15 <condition>
16 <performative>CFP</performative>
17 <sender>forceAgent</sender>
18 <goal>GOAL_PATH</goal>
19 </condition>
20 </send>
21 <send>
22 <to>grouping</to>
23 <performative>RULE_END_GROUP</performative>
24 <infoType>NON</infoType>
25 <condition>
26 <performative>CFP</performative>
27 <sender>forceAgent</sender>
28 <goal>GOAL_PATH</goal>
29 </condition>
30 </send>
31 <receive>
32 <from>forceAgent</from>
33 <performative>CFP</performative>
34 <infoType>NON</infoType>
35 <action>
36 <type>GOAL</type>
37 <goal>GOAL_DEFENSE</goal>
38 </action>
39 </receive>
40 </behaviors>

Listing A.3: Strategy XML-based file model - Second Part

85

Appendix A

86

References

[AT90] Hendler J. Allen, J. and A. Tate. Readings in planning. The Morgan Kaufmann series2

in representation and reasoning, 1990.

[Bel07] Caire G. Greenwood D. Bellifemine, F. L. Developing Multi-Agent Systems with JADE.4

Wiley, first edition edition, 2007.

[Bou04] Le Page C. Bousquet, F. Multi-agent simulations and ecosystem management: a re-6

view. ecological modeling. Ecological Modeling, pages 176 – 313–332, 2004.

[Bra08] Paoli J. Sperberg-McQueen C. M. Maler E. Yergeau F. Bray, T. Extensible Markup8

Language (XML) 1.0. W3C Recommendation, fifth edition edition, 2008.

[Cho04] Lynch K. M.-Hutchinson S. Kantor G. Burgard W. Kavraki L. E.and Thrun S. Choset,10

H. Principles of robot motion. MIT Press, pages 86–88, 2004.

[CR07] Pereira A. Valente-P. Duarte P. Cruz, F. and L. P. Reis. Intelligent farmer agent for12

multi-agent ecological simulations optimization. Springer-Verlag, pages 593–604,
2007.14

[DC89] Lesser V. R. Durfee, E. H. and D. D. Corkill. Trends in cooperative distributed problem
solving. IEEE Transactions on Knowledge and Data Engineering, pages 63–83, 1989.16

[Fer95] J. Ferber. Les systèmes multi-agents. vers une intelligence collective. InterEditions,
1995.18

[Fer96] N. Ferrand. Modelling and supporting multi-actor planning using multi-agent systems.
1996.20

[FG90] C. T. Fitz-Gibbon. Performance Indicators Pb. Routledge, 1990.

[fIPA00] Foundation for Intelligent Physical Agents. Fipa acl message structure specification.22

2000.

[Fra97] Graesser A. Franklin, S. Is it an agent, or just a program?: A taxonomy for autonomous24

agents. Lecture Notes in Computer Science, pages 1193: 21–36, 1997.

[Geo95] M. P. Georgeff. Bdi-agents: From theory to practice. Proceedings of the First Interna-26

tional Conference on Multiagent Systems, 1995.

[Hai90] E. Haines. Ray Tracing Ñews. Volume 3, number 4 edition, 1990.28

[Hal85] Shapiro N. Z. Shukiar H. J. Hall, H. E. Overview of RSAC system software: a briefing.
RAND Corporation, first edition edition, 1985.30

87

REFERENCES

[Hor00] Hégaret P. L. Wood L. Nicol G. Robie J. Champion M. Byrne S. Hors, A. L. Document
Object Model (DOM) Level 2 Core Specification. W3C Recommendation, first edition 2

edition, 2000.

[Ila04] A. Ilachinski. Artificial War: Multiagent-Based Simulation of Combat. World Scien- 4

tific Press, first edition edition, 2004.

[Jod11] G. Jody. GeoTools User Guide. Manning, open source geospatial foundation edition, 6

2011.

[JPL97] Caltech Jet Propulsion Laboratory. Researchers stage largest military simulation ever. 8

1997.

[Kha95] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Interna- 10

tional Journal of Robotics Research, pages 90–98, 1995.

[Koe04] Nourbakhsh I. Sycara K. Koes, M. Communication efficiency in multi-agent systems. 12

In Proceedings of ICRA 2004, pages 2129–2134, 2004.

[Kyu85] L. et al. Kyu. A high-level design language for programmable logic devices. Manhasset 14

NY: CPM Publications, pages 50–62, 1985.

[Lan56] F. W. Lanchester. Mathematics in warfare. The World of Mathematics, pages 2138– 16

2157, 1956.

[Lot20] A. J. Lotka. Analytical note on certain rhythmic relations in organic systems. Proceed- 18

ings of the National Academy of Sciences of the United States of America., pages 6:
410–415, 1920. 20

[MAK11] VT MAK. Vr-forces: The complete simulation solution. 2011.

[Nor06] N.T.; Vos J.R. North, M.J.; Collier. Experiences creating three implementations of the 22

repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simula-
tion, pages 1–25, 2006. 24

[oD98] Department of Defense. Department of Defense Modeling and Simulation (M&S) Glos-
sary. DoD, 1998. 26

[Oli99] E. Oliveira. Applications of agent-based intelligent systems. Proceedings of 4th SBAI-
Brasilian Symposium of Intelligent Automation, 1999. 28

[oPH05] Harvard School of Public Health. Largest computational biology simulation mimics
life’s most essential nanomachine. Los Alamos National Laboratory, 2005. 30

[Per10] Correia A. M. Pereira, A. Intelligent simulation of coastal ecosystems. PhD thesis,
Faculdade de Engenharia da Universidade do Porto, 2010. 32

[Rea07] Fry B. Reas, C. Processing: A Programming Handbook for Visual Designers and
Artists. MIT press, first edition edition, 2007. 34

[RV03] M. Robinson and P. Vorobiev. Swing. Manning, second edition edition, 2003.

[Sar91] R. G. Sargent. Simulation model verification and validation. Proceedings in Winter 36

Simulation Conference’91, pages 37–47, 1991.

88

REFERENCES

[Smi98] R. D. Smith. Essential techniques for military modeling and simulation. Proceedings
of Winter Simulation Conference’ 98, pages 805–812, 1998.2

[Ste90] V. Stepanov, Lumelsky. Path-planning strategies for a point mobile automation amidst
unknown obstacles of arbitrary shape. Autonomous Robots Vehicles, pages 1058–1068,4

1990.

[Tay83] J. G. Taylor. Modeling and simulation of land combat. Georgia Institute of Technology,6

1983.

[Vol26] V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali con-8

viventi. Accademia dei Lincei, pages 2: 31–113, 1926.

[Woo95] Jennings N. R. Wooldridge, M. J. Intelligent agents: Theory and practice. Knowledge10

Engineering Review, 1995.

[Woo02] M. J. Wooldridge. An introduction to multiagent systems. John Wiley & Sons, second12

edition edition, 2002.

89

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem and Goals
	1.4 Document Structure

	2 State of the Art
	2.1 Introduction
	2.2 Simulation
	2.2.1 Military Context
	2.2.2 Simulation Platforms
	2.2.3 Agent Based

	2.3 Modeling

	3 Simulation
	3.1 Multi-agent Simulation
	3.1.1 Multi-agent System
	3.1.2 Agent
	3.1.3 Environment

	3.2 Military Simulation
	3.2.1 Properties

	4 Problem and Motivation
	4.1 Motivation (DAT-POW and Safeport)
	4.2 Goals

	5 Implementation
	5.1 Platform
	5.1.1 JADE - Multi-agent System Framework
	5.1.2 FIPA - Foundation for Intelligent Physical Agents

	5.2 Conceptual Solution
	5.2.1 Physical Architecture
	5.2.2 Logical Architecture
	5.2.3 Modular Communication
	5.2.4 Class Model
	5.2.5 Multi-agent Architecture
	5.2.6 Agent Architecture
	5.2.7 Interface

	5.3 Functionalities
	5.3.1 Obstacle Avoidance
	5.3.2 Strategies
	5.3.3 Simulation

	6 Validation - Case Study
	6.1 Tabletop 1
	6.1.1 Configuration File
	6.1.2 Strategy file
	6.1.3 Simulation
	6.1.4 Results

	6.2 Tabletop 2
	6.2.1 Configuration File
	6.2.2 Simulation
	6.2.3 Results

	7 Conclusion and Future Work
	7.1 Work accomplished and conclusions
	7.2 Future Work
	7.2.1 Artificial Intelligence
	7.2.2 Integration with DSS
	7.2.3 Sensors and Environment Improvement
	7.2.4 Strategies and Behaviors

	A Appendix A
	References

