
SDIS

Sistemas Distribuídos

Project 2

Authors:
António Cruz
João Malheiro
Ricardo Boia
Tiago Castro

Student number:
up201603526
up201605926
up201505244
up201606186

June 1, 2019

Project 2

Contents
1 Overview 2

2 Protocols 2
2.1 RMI interface . 2
2.2 Messages . 3

2.2.1 BackupInit . 3
2.2.2 BackupReady . 3
2.2.3 Backup . 4
2.2.4 BackupComplete . 4
2.2.5 GetPredecessor . 4
2.2.6 ResponsePredecessor . 4
2.2.7 Lookup . 4
2.2.8 Successor . 5
2.2.9 Predecessor . 5
2.2.10 Ping . 5
2.2.11 Pong . 5
2.2.12 ReclaimBackup . 6
2.2.13 RestoreInit . 6
2.2.14 Restore . 6
2.2.15 RestoreFile . 7
2.2.16 RestoreSuccessor . 7
2.2.17 Delete . 7

3 Concurrency design 8
3.1 ScheduledExecutorService . 8
3.2 Java NIO . 8

4 JSSE 8

5 Scalability 10
5.1 Stabilize . 11
5.2 FixFinger . 11

6 Fault-tolerance 12
6.1 CheckPredecessor . 13

1

Project 2

1 Overview

In this report it is explained how the project was developed, namely, how the protocol
implemented works and how we the code was structured to use the Chord protocol
to create a decentralized distributed system. The backup service supports backups,
restores, deletes and reclaims. These services are requested to the peer via the client
testapp. The project addresses scalibility by using the Chord protocol to create a
decentralized distributed backup service and has implemented some fault-tolerance
features. A threadpool is used to manage the concurrency. JSSE and NIO are
some of the other features implemented in the program.

2 Protocols

In this section, it is described the implementation of the RMI interface, as well as
how the message are exchanged, their format and the rules. Each message had a
brief explanation followed its format and its handling code.

2.1 RMI interface

The TestApp - client - and Peer are connected using RMIStub, that extends Remote.
The client can send four types of request: backup, delete, restore and reclaim.

1 pub l i c i n t e r f a c e RMIStub extends Remote {
2

3 /∗∗
4 ∗ I n t e r f a c e method to c a l l the Backup Protoco l c l a s s
5 ∗ @param f i l e f i l e
6 ∗ @param rep l i c a t i onDeg r e p l i c a t i o n degree
7 ∗ @throws RemoteException except ion
8 ∗/
9 void backupProtocol (S t r ing f i l e , i n t r ep l i c a t i onDeg) throws

RemoteException ;
10

11 /∗∗
12 ∗ I n t e r f a c e method to c a l l the Restore Protoco l c l a s s
13 ∗ @param f i l e f i l e
14 ∗ @throws RemoteException except ion
15 ∗/
16 void r e s t o r eP r o t o c o l (S t r ing f i l e) throws RemoteException ;
17

18 /∗∗
19 ∗ I n t e r f a c e method to c a l l the Delete Protoco l c l a s s

2

Project 2

20 ∗ @param f i l e f i l e
21 ∗ @throws RemoteException except ion
22 ∗/
23 void d e l e t eP ro t o c o l (S t r ing f i l e) throws RemoteException ;
24

25 /∗∗
26 ∗ I n t e r f a c e method to c a l l the Reclaim Protoco l c l a s s
27 ∗ @param reservedSpace r e s e rved space
28 ∗ @throws RemoteException except ion
29 ∗/
30 void r e c l a imProtoco l (i n t reservedSpace) throws RemoteException ;
31 }

2.2 Messages

2.2.1 BackupInit

Message used to initiate the backup protocol. This message is used to provide
the search for the responsible node for the objective fileHash. When a BackupInit
message is received, that peer will search in its finger table for the responsible node.
If it is found, it sends a backup ready message to the init peer with the peer in the
finger table information. On the other hand, if the responsible node is not accounted
for, another backup message will be deployed to the largest table jump. It should
be noted that this message does not include the file byte data and that the protocol
has 2 stages (init, file saving) .

BACKUP-INIT {File Hash} {FILE Name} {FILE repDegree}

2.2.2 BackupReady

Message sent to the initiation peer everytime a peer sees that one of its finger table
values is responsible for the queried filehash. When the initiatior peer receives this,
it then goes into the second stage of the protocol, the file saving stage. The peer is
going to read the data from the file and send a Backup Message to the responsible
peer so that it can save it in its peer disk.

BACKUP-READY {File Hash} {FILE name} {FILE repDegree}

3

Project 2

2.2.3 Backup

This message includes the data from the requested file and when a peer receives it it
will, after a rep degree check, save the data in its peer disk. Following that, the peer
will then check if the file needs to be resent because of the repDegree. After saving,
this class will forward another backup message to its sucessor unless the repDegree
- 1 is equal to 0, in that case the chain will be stopped.

BACKUP {File Hash} {FILE repDegree} {FILE content}

2.2.4 BackupComplete

This message’s purpose is to let the initiator peer know that the file has been saved.

BACKUP-COMPLETE {File Hash} {FILE repDegree}

2.2.5 GetPredecessor

This message is sent as part of the Stabilize protocol where each node periodically
sends a message to its sucessor asking for its predecessor, if it responds with the
hash of the sender then nothing happens, however, if its sucessor responds with a
different hash than the node will change its sucessor to it.

GET_PREDECESSOR {Sender IP} {Sender PORT}

2.2.6 ResponsePredecessor

This message is sent after receiving a GetPredecessor messager with the information
of the Peer’s predecessor

RESPOSE_PREDECESSOR {Predecessor Hash} {Predecessor IP } {Predecssor PORT}

2.2.7 Lookup

This message is constantly being sent throughout the network it order to update
each of the the Peer’s fingertables. This is used to search for the sucessor of a
certain hash. Upon receving this message the Peer will check if the queried hash is
bigger than its own hash and smaller than its sucessor’s, in which case it means that
its sucessor is the node responsible for that hash. If not, the peer will search for the

4

Project 2

lowest hash in its fingertable that is higher than the queried hash and send a new
Lookup message to it until the responsible node for that hash is found.

LOOKUP {Queried Hash} {Sender IP} {Sender PORT}

2.2.8 Successor

This message is sent as a response to a Lookup message. This informs the peer
that originally sent the Lookup message who is the sucessor of the peer hash that
he queried. This message is mostly used to keep the finger table updated. Upon
receiving this message the Peer will compare the Queried Hash with the Sucessor
Hash to determine which entry in the finger table it corresponds to.

SUCESSOR {Queried Hash} {Sucessor Hash} {Sender IP} {Sender PORT}

2.2.9 Predecessor

This message is used to inform the Peer that receives it that the Peer who sent it it
is its predecessor.

PREDECESSOR {Predecessor Hash} {Predecessor IP } {Predecssor PORT}

2.2.10 Ping

This message is sent from a peer to its predecessor in order to check if it is still
alive. When a peer receives this message, it is to send a Pong message to assure
that it is not dead. Next is expressed the message’s format followed by the code
that represents de message’s handler function content.

PING {Sender IP} {Sender PORT}

1 MessageForwarder . sendMessage (
2 new PongMessage (c i . ge t Ip () , c i . getPort ())
3) ;

2.2.11 Pong

This message is sent from a peer to the peer who sent a Ping message to notify it that
it is alive. When a peer receives this message, it is to notify the checkPredecessor
function that the predecessor is still alive and let the thread resume its course. Next

5

Project 2

is expressed the message’s format followed by the code that represents de message’s
handler function content.

PONG

1 synchronized (Peer . checkPredeces sor) {
2 CheckPredecessor . dead = f a l s e ;
3 Peer . checkPredeces sor . n o t i f y () ;
4 }

2.2.12 ReclaimBackup

This message is sent once a file is deleted due to the Reclaim protocol. Seen as the
file must be stored in another peer this message is sent to its sucessor to backup the
deleted file, if the Peer that receives this message already owns the file (due to the
replication degree of the file) it redirects the message to its sucessor.

RECLAIM_BACKUP {File Hash} {File Name} {File Content}

2.2.13 RestoreInit

Message that initiates the restore protocol. It contains both the fileHash and the
filename. The searching phase of this protocol goes exactly the same has backupInit.
It only deffers after the right peer is found. In the restore protocol, when that
happens, the peers sends to the responsible node a RestoreMessage that will trigger
the rest of the process.

RESTORE-INIT {Sender Hash} {Sender IP} {Sender PORT} {File Hash} {File Name}

2.2.14 Restore

Message sent when the restore init finds the responsible node for the respective
filehash. When received, the peer will check if it owns the file in its backup protocol
peer disk folder, if it does a restorefile will be sent to the init peer in order to
complete the protocol. However, if it does not own the file due to a reclaim per
example, a RestoreSucessor is going to be sent to its respective successor to search
for the file.

RESTORE {Sender Hash} {Sender IP} {Sender PORT} {File Hash} {File Name}

6

Project 2

2.2.15 RestoreFile

This is the final stage of the restore protocol, in which the data is sent to the init
peer for a file to be stored in the restored folder. When this message is received,
the peer that receives it will store the content bytes in the respective folder with the
filename therefore restoring the file that was previously backed up.

RESTORE WITH FILE {Sender Hash} {Sender IP} {Sender PORT} {File Hash} {File Name}

2.2.16 RestoreSuccessor

This Message is sent only when the node that is responsible for a certain file does not
have it (reclaim used on that peer, per example). In this case the file will probably
be in the Peer’s sucessors either due to the replication degree or due to the Reclaim
protocol. Therefore this message will be sent to its sucessor until the file is found,
where it will send the file to the Peer asking it, or this message returns to the Peer
that sent it originally.

RESTORE-SUCESSOR {Sender Hash} {Sender IP} {Sender PORT} {File Hash} {File Name}

2.2.17 Delete

This message is sent as part of the Delete protocol where this message is sent to all
the nodes in the network so that they can delete their local copies of the file. This
must be sent to all nodes seen as we cannot keep count of what nodes had to reclaim
space and therefore send their local copies of the file to another node, so it order to
be sure of its deletion it must be sent to everyone.

DELETE {File Hash} {Sender Hash}

1 i n t index ;
2 i f (rece ivedKey . equa l s (ChordManager . peerHash . t oS t r i ng ())) {
3 index = 0 ;
4 } e l s e {
5 f o r (index = 0 ; index < ChordManager . getM () ; index++){
6 St r ing r e s = ChordManager . ca lculateNextKey (ChordManager .

peerHash , index , ChordManager . getM ()) ;
7

8 i f (r e s . equa l s (rece ivedKey))
9 break ;

10 }
11 }
12 ChordManager . getFingerTable () . s e t (index , c i) ;

7

Project 2

3 Concurrency design

In this section, we explain how we dealt with concurrency of the different services
present in each peer.

3.1 ScheduledExecutorService

The class Peer has an ScheduledExecutorService to which the threads will be
submitted. The program uses threads for receiving (PeerReceiver) and sending
message (sendMessage), to manage Chord - a main class (ChordManager) and three
classes to stabilize it (CheckPredecessor, FixFinger, Stabilize) - and for the services
offered - backup, delete, restore, reclaim (all classes are located in protocol package).

3.2 Java NIO

We also implemented Java NIO that, unlike JAVA IO does not block a thread until
there is data to read / write or the data is fully written. Java NIO’s non-blocking
mode enables a thread to request reading data from a channel, and only get what is
currently available, or nothing at all, if no data is currently available. Rather than
remain blocked until data becomes available for reading, the thread can go on with
something else.

4 JSSE

The message exchange between peers is made using JSSE, to assure the security
of this communication. Before a Peer sends information to another, first he must
authenticate himself.

1 pr i va t e void s e tSe rve rSocke t ()
2 {
3 s e rve rSocke t = nu l l ;
4

5 SSLServerSocketFactory se rverSocketFactory = (
SSLServerSocketFactory) SSLServerSocketFactory . ge tDe fau l t () ;

6

7 t ry {
8 s e rve rSocke t = (SSLServerSocket) s e rverSocketFactory .

c r ea t eSe rve rSocke t (port) ;
9 s e rve rSocke t . setNeedClientAuth (t rue) ;

8

Project 2

10 s e rve rSocke t . s e tEnab ledProtoco l s (s e rve rSocke t .
getSupportedProtoco l s ()) ;

11 System . out . p r i n t l n (" Server socke t thread crea ted and ready to
r e c e i v e ") ;

12 } catch (IOException e) {
13 System . e r r . p r i n t l n ("Error c r e a t i n g s e r v e r socket ") ;
14 e . pr intStackTrace () ;
15 }
16 }

When a Peer is started, it creates a PeerReceiver thread that is responsible for
setting the keystore and trustore, creating a SSLServerSocket and listens for com-
munication requests. When a message is received, PeerReceived creates a Message-
Handler thread that will redirect the message to the correct handler.

1 pub l i c void run () {
2 Object messageObject = nu l l ;
3 SSLSocket connect ionSocket = nu l l ;
4

5 whi le (t rue) {
6 t ry {
7 connect ionSocket = (SSLSocket) s e rve rSocke t . accept () ;
8 } catch (IOException e) {
9 e . pr intStackTrace () ;

10 }
11

12 ObjectInputStream inFromClient = nu l l ;
13 t ry {
14 inFromClient = new ObjectInputStream (connect ionSocket .

getInputStream ()) ;
15 } catch (IOException e) {
16 e . pr intStackTrace () ;
17 }
18

19 i f (connect ionSocket != nu l l) {
20 i f (inFromClient != nu l l) {
21 t ry {
22 messageObject = inFromClient . readObject () ;
23 } catch (IOException e) {
24 e . pr intStackTrace () ;
25 } catch (ClassNotFoundException e) {
26 e . pr intStackTrace () ;
27 }
28 MessageHandler mh = new MessageHandler (messageObject) ;
29 Peer . executor . submit (mh) ;
30 }
31 }

9

Project 2

32 }
33 }

To send a message to a Peer, it is used a SendMessage thread that will create a
SSLSocket, connected to the desired SSLServerSocket, do the Handshake protocol
and send the information.

1 pub l i c void run () {
2 System . out . p r i n t l n ("Sending " + message + " to : " + message .

getIpAddress () + message . getPort ()) ;
3

4 i f (message . getPort () == Peer . port)
5 re turn ;
6

7 SSLSocketFactory socketFactory = (SSLSocketFactory)
SSLSocketFactory . ge tDe fau l t () ;

8 SSLSocket c l i e n t S o c k e t ;
9 t ry {

10 c l i e n t S o c k e t = (SSLSocket) socketFactory . c r ea t eSocke t (
InetAddress . getByName(message . getIpAddress ()) , message . getPort ()) ;

11 c l i e n t S o c k e t . startHandshake () ;
12

13 ObjectOutputStream outToServer = new ObjectOutputStream (
c l i e n t S o c k e t . getOutputStream ()) ;

14 outToServer . wr i teObject (message) ;
15 } catch (Exception e) {
16 System . out . p r i n t l n ("User d i s connected ") ;
17 }
18 }

5 Scalability

In order to make the system as scalable as possible, we used the Chord protocol
to create a decentralized distributed backup service. This means that there are no
servers in the system and that each peer is equally responsible for keeping the service
working correctly. The ChordManager class is responsible for managing the chord
aspects in each Peer.

When a Peer joins the system, he will create a thead ChordManager that will
generate a key, get the Peer ’s successor and initilize the finger table. It will also
start a FixFinger thread that, along with the Stabilize thread initialized in class
Peer, will be responsible for the stabilization of the protocol.

10

Project 2

5.1 Stabilize

This process is run on a thread every 500ms. First, it asks the Peer ’s sucessor
for its predecessor, then it will check if that predecessor is the Peer ’s new successor
and, if it is, it will set it accordingly. Finally, it will send a message to the Peer ’s
successor notifying it that he might need to update its predecessor.

1 pub l i c c l a s s S t a b i l i z e implements Runnable {
2 @Override
3 pub l i c void run () {
4 t ry {
5 i f (ChordManager . getFingerTable () . get (0) . getPort () == Peer .

port && ChordManager . p r edec e s s o r != nu l l) {
6 ChordManager . getFingerTable () . s e t (0 , ChordManager .

p r edec e s so r) ;
7 } e l s e i f (ChordManager . getFingerTable () . get (0) . getPort () !=

Peer . port) {
8 MessageForwarder . sendMessage (new GetPredecessorMessage (

new Connect ionInfo (nu l l , InetAddress . getLocalHost () . getHostAddress ()
, Peer . port) , ChordManager . getFingerTable () . get (0) . ge t Ip () ,
ChordManager . getFingerTable () . get (0) . getPort ())) ;

9 }
10 } catch (Exception e) {
11 e . pr intStackTrace () ;
12 }
13 }
14 }

5.2 FixFinger

This process is run on a thread every 500ms and is responsible for updating the
finger table. It checks who is the Peer resposible for the finger table entry, using the
ChordMamager ’s method searchSuccessor2, and, if it is the Peer or its successor, it
will update the finger table and end, if it isn’t, it will send a LOOKUP message to
the Peer, present in the finger table, with the largest key, that is smaller than the
wanted key.

1 pub l i c c l a s s FixFingers implements Runnable {
2

3 pr i va t e i n t index = −1;
4

5 @Override
6 pub l i c void run () {
7 index++;
8

11

Project 2

9 i f (index == ChordManager . getM ()) {
10 ChordManager . pr intF ingerTab le () ;
11 index = 0 ;
12 }
13

14 St r ing key = ChordManager . ca lculateNextKey (ChordManager .
peerHash , index , ChordManager . getM ()) ;

15 ArrayList<Connect ionInfo> f inge rTab l e = ChordManager .
getFingerTable () ;

16

17 i f (index > (f i nge rTab l e . s i z e () − 1)) {
18 t ry {
19 f i ng e rTab l e . add (new Connect ionInfo (ChordManager .

peerHash , InetAddress . getLocalHost () . getHostAddress () , Peer . port)) ;
20 } catch (UnknownHostException e) {
21 e . pr intStackTrace () ;
22 }
23 }
24

25 Message r e s = nu l l ;
26 t ry {
27 r e s = ChordManager . s ea r chSucce s so r2 (new Connect ionInfo (new

Big Intege r (key) , InetAddress . getLocalHost () . getHostAddress () , Peer .
port)) ;

28 } catch (UnknownHostException e) {
29 e . pr intStackTrace () ;
30 }
31

32 i f (r e s != nu l l) {
33 i f (r e s i n s t an c e o f SucessorMessage) {
34 f i ng e rTab l e . s e t (index , ((SucessorMessage) r e s) . getCi ())

;
35 }
36 e l s e i f (r e s i n s t an c e o f LookupMessage)
37 {
38 MessageForwarder . sendMessage (r e s) ;
39 }
40 }
41 }
42 }

6 Fault-tolerance

In order to keep the system working like expected, fault-tolerance mechanisms
are needed to be implemented. Unfortunately we weren’t able to fully implement

12

Project 2

fault-tolerance on our project and we can’t say our implementation is completely
fault-tolerant. What we were able to implement is the CheckPredecessor process.

6.1 CheckPredecessor

This process is ran by each peer on a thread on a set interval of 1s. This process
sends a PING message to the peer’s predecessor in order to check if it is alive, it
then waits a set timeout of 500ms for an answer. If the answer never comes (in the
format of a PONG message), the predecessor is considered dead and set to null.

1 pub l i c c l a s s CheckPredecessor implements Runnable{
2 pub l i c s t a t i c boolean dead ;
3 pr i va t e i n t timeout ;
4

5 pub l i c CheckPredecessor (i n t timeout) {
6 t h i s . t imeout = timeout ;
7 }
8

9 @Override
10 pub l i c void run () {
11 synchronized (t h i s) {
12 i f (ChordManager . p r edec e s so r != nu l l) {
13 t ry {
14 MessageForwarder . sendMessage (new PingMessage (new

Connect ionInfo (nu l l , InetAddress . getLocalHost () . getHostAddress () ,
Peer . port) , ChordManager . p r edec e s s o r . ge t Ip () , ChordManager .
p r edec e s so r . getPort ())) ;

15 t h i s . wait (t imeout) ;
16 } catch (Exception e) {
17 e . pr intStackTrace () ;
18 }
19 i f (dead) {
20 ChordManager . p r edec e s so r = nu l l ;
21 }
22 }
23 }
24 }
25 }

13

